Precalculus Guided Notes: INTRO to Limits

Name \qquad Date \qquad
Review Questions

1) Solve for all values of $x \quad \cos ^{2} x-2 \cos x+1=0$
2) The graph of $r=3 \cos \theta+3$ is a \qquad with an extent of \qquad dotted lines at $\theta=$ \qquad . This is where $r=0$.
3) Given SAS, use Law of \qquad .

LIMIT: A limit represents a value that a function is approaching at a specific x value In general, $\lim f(x)=L$ Read as "the limit of $f(x)$ as x approaches a equals L "

$$
x \rightarrow \infty
$$

This means that as x gets closer to a, but remains unequal to a, the corresponding values of $f(x)$ get closer to L .
Use the graph of f to find the indicated limit and function value.
Ex. 1

$\lim f(x)$
f(2)
Ex. 2
Y

$\operatorname{limf}(x)$
$f(0)$
Ex. 3

$\operatorname{limf}(x)$
$\mathrm{f}(-1)$
Ex. 4

$\operatorname{limf}(x)$
f(-2)
Ex. 5

$\lim (f x)$
$f(1)$
Ex. 6

Precalculus Guided Notes: INTRO to Limits

Construct a table to find the limit of each. Think of the graph mentally as well to help with finding the limit.
Ex. $7 \lim (5 x)$
$x \rightarrow 0$
Ex. $8 \lim 1 /(x+1)$
$x \rightarrow-1+$
$x \rightarrow-1-$
$x \rightarrow-1$
Ex. $9 \lim \tan x / x$ $x \rightarrow 0$
Ex. $10 \lim f(x)$, where $f(x)=x+1$ if $x<1$ $x \rightarrow 1 \quad 3 x-3$ if $x \geq 1$

Limits: If the limit as x approaches a from the right $=$ the limit as x approaches a from the left then the limit as x approaches a exists.

If these two limits (from the left and from the right) are not equal then the limit does not exist. Strategies

- Make a graph of the function.
- Make a chart of values approaching the number a.
- If you know the graph is continuous then just plug in.

11.2 Finding Limits

Pre-Calculus 11.2 Finding Limits using the Properties

Review
Given $\boldsymbol{a}=5 i+2 j, \boldsymbol{b}=4 i-5 j$, find

1. Find the direction of vector a.
2. Find the magnitude of vector b.
3. Find $\|\boldsymbol{a}+\boldsymbol{b}\|$

Objective: Finding limits using the properties of limits
$\lim _{x \rightarrow a} x=a$
$\lim _{x \rightarrow a} c=c$
Ex 1) $\lim _{x \rightarrow 5}(12+x)$
Ex 2) $\lim _{x \rightarrow 2}(2 x-5)(x+3)$
Ex 3) $\lim _{x \rightarrow-2} \sqrt{4 x^{2}+5}$
Ex 4) $\lim _{x \rightarrow 3}\left(4 x^{3}+2 x^{2}-6 x+5\right)$

Ex 5) $\lim _{x \rightarrow-2} \frac{3 x}{x-4}$

$$
\text { Ex 6) } \lim _{x \rightarrow 3} \frac{x^{2}-x-6}{x^{2}-9}
$$

Ex 7) $\lim _{x \rightarrow 5} \frac{2 x^{2}-7 x-15}{x-5}$
Ex 8) $\lim _{x \rightarrow 0} \frac{\sqrt{16+x}-4}{x}$

Ex 9) $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$
Ex 10) $\lim _{x \rightarrow 0} \frac{\frac{1}{x+4}-\frac{1}{4}}{x}$

$$
\text { Ex 11) } f(x)=\left\{\begin{array}{l}
x^{2}+5 \text { if } x<2 \\
3 x+1 \text { if } x \geq 2
\end{array}\right.
$$

a. $\quad \lim _{x \rightarrow 2^{-}} f(x)$
b. $\quad \lim _{x \rightarrow 2^{+}} f(x)$
c) $\lim _{x \rightarrow 2} f(x)$
Ex 12) $f(x)=\left\{\begin{array}{l}x^{2}+6 \text { if } x<2 \\ x^{3}+2 \text { if } x \geq 2\end{array}\right.$
Ex 13) $f(x)=\left\{\begin{array}{c}\frac{x^{3}-64}{x-4} \text { if } x \neq 4 \\ 7 \text { if } x=4\end{array}\right.$

11.3 Limits and Continuity Temp

Goal: Determine if a function is continuous at a specific number and determine where functions are discontinuous.

Review Questions: Use the graph at the right:

1) $\lim _{x \rightarrow 1^{+}} f(x)=$
2) $\lim _{x \rightarrow 1^{-}} f(x)=$
3) $\lim _{x \rightarrow 1} f(x)=$
4) $f(1)=$

Definition of a Function Continuous at Number:

1) f is defined at a, that is, a is in the domain of f, so that $f(a)$ is a real number.
2) $\lim _{x \rightarrow a} f(x)$ exists.
3) $\lim _{x \rightarrow a} f(x)=f(a)$

Determine if the following functions $f(x)$, are continuous at the given value a.

Ex. $1 f(x)=\frac{x-2}{x^{2}-4}$ for $a=1$ and for $a=2$

$$
\text { Ex. } 2 f(x)=\left\{\begin{array}{c}
\frac{x^{2}-16}{x+4} \text { if } x \neq-4 \\
5 \text { if } x=-4
\end{array} \text { for } a=-4\right.
$$

Ex. $3 f(x)=\left\{\begin{array}{lr}x-2 & \text { if } x \leq 0 \\ 3 x^{2}-3 x-2 & \text { if } x>0\end{array}\right.$ for $a=0$

Determine for what numbers, if any, the given function is discontinuous.
Ex. $4 f(x)=\frac{x-7}{x^{2}-5 x-14}$

Ex. $5 f(x)=\frac{\tan x}{x}$

Ex. $6 f(x)=10$

11.3A - Limits and Continuity Temp

Goal: Determine if a function is continuous at a specific number and determine where functions are discontinuous.

Review Questions: Determine where each function is discontinuous.

1) $f(x)=\frac{x-3}{x^{2}+4 x-21}$
2) $f(x)=\frac{\cos x}{x}$
3) $f(x)=\sqrt{2}$

Recall - Definition of a Function Continuous at Number:

1) f is defined at a, that is, a is in the domain of f, so that $f(a)$ is a real number.
2) $\lim _{x \rightarrow a} f(x)$ exists.
3) $\lim _{x \rightarrow a} f(x)=f(a)$

Determine if the following function $f(x)$, is continuous at the given value a.

Ex. $1 f(x)=\left\{\begin{array}{ll}\frac{x^{4}-16}{x-2} & \text { if } x \neq 2 \\ 32 & \text { if } x=2\end{array}\right.$ for $a=2$

Ex. $2 f(x)=\left\{\begin{array}{ll}\sqrt{3-x} & \text { if } x \leq 3 \\ x^{2}-3 x & \text { if } x>3\end{array}\right.$ for $a=3$

Determine for what numbers, if any, the given function is discontinuous.
Ex. $3 f(x)=\left\{\begin{array}{cc}2 x & \text { if } x \leq 0 \\ x^{2}+1 & \text { if } 0<x \leq 2 \\ 7-x & \text { if } x>2\end{array}\right.$

Ex. $4 f(x)= \begin{cases}\frac{\sin 3 x}{x} & \text { if } x \neq 0 \\ 3 & \text { if } x=0\end{cases}$
Ex. $5 f(x)= \begin{cases}x+1 & \text { if } x \leq 3 \\ x^{2}-3 & \text { if } x>3\end{cases}$

11.4 - Introduction to Derivatives

Goal: Find the slope of a tangent line at a given point in a function and write a slope intercept equation of the tangent line.

Review Question: Determine for what numbers, if any, the following function is discontinuous.

1) $f(x)=\left\{\begin{aligned} x^{2} & \text { if } x<-2 \\ -x+2 & \text { if }-2 \leq x<1 \\ 3 x & \text { if } x \geq 1\end{aligned}\right.$

Consider the following graph:

How do we find the slope of the line that connect the points $(2,1)$ and $(8,8)$? This is called a secant line. What changes if we connect from $(2,1)$ to $(6,4)$? From $(2,1)$ to $(4,2)$? What if I want to find the slope at the single point $(2,1)$?

Consider the situation in general terms...

$$
\text { slope }=
$$

To find the slope at a single point (tangent line), let the horizontal distance go to zero or find the limit as h approaches zero.

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

This is also called the instantaneous rate of change of f with respect to x at a.

Ex. 1 Find the slope of the tangent line to the graph of $f(x)=x^{2}+x$ at $(2,6)$. Then find the slope-intercept equation of the tangent line.

Ex. 2 Find the slope of the tangent line to the graph of $f(x)=2 x^{2}+x-2$ at $(1,1)$. Then find the slope-intercept equation of the tangent line.

Ex. 3 Find the slope of the tangent line to the graph of $f(x)=\sqrt{x}$ at $(4,2)$. Then find the slope-intercept equation of the tangent line.

Ex. 4 Find the slope of the tangent line to the graph of $f(x)=\frac{3}{x}$ at $(1,3)$. Then find the slope-intercept equation of the tangent line.

11.4A - Introduction to Derivatives Continued

Goal: Find the derivative of a function and use it to find the slope of tangent lines.

Review Question: Find the slope of the tangent line to the graph of $f(x)=x^{3}$ at $(2,8)$.

Definition of the Derivative of a Function:

For a function $f(x)$, the derivative of f at x, denoted by $f^{\prime}(x)$ read " f prime of x " is defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided that this limit exists. The derivative of a function gives the slope of the function for any value of x in the domain of $f^{\prime}(x)$.

Ex. 1 Find the derivative of $f(x)=x^{2}+3 x$ at x. Then find the slopeof the tangent line of $f(x)$ at $x=-2$ and $x=-\frac{3}{2}$.

Ex. 2 Find $f^{\prime}(x)$ of $f(x)=x^{3}-2$ at x. Then find the slopeof the tangent line of $f(x)$ at $x=-1$ and $x=1$.

Ex. 3 Find the derivative of $f(x)=\sqrt{x}+2$ at x. Then find the slopeof the tangent line of $f(x)$ at $x=4$ and $x=1$.

Ex. 4 Find $f^{\prime}(x)$ of $f(x)=\frac{8}{x}$ at x. Then find the slopeof the tangent line of $f(x)$ at $x=-2$ and $x=1$.

