Precalculus Guided Notes: INTRO to Limits

Review Questions

limf(x)

- 1) Solve for all values of x $\cos^2 x 2\cos x + 1 = 0$
- The graph of r = 3cosθ + 3 is a ______ with an extent of _____, dotted lines at θ = _____.
 This is where r = 0.
- 3) Given SAS, use Law of ______.

LIMIT: A limit represents a value that a function is approaching at a specific x value

In general, $\lim f(x) = L$ Read as "the limit of f(x) as x approaches a equals L"

 $x \rightarrow \infty$

This means that as x gets closer to a, but remains unequal to a, the corresponding values of f(x) get closer to L.

Use the graph of f to find the indicated limit and function value.

f(1)

limf(x)

f(-1)

lim(fx)

f(-2)

Precalculus Guided Notes: INTRO to Limits

Construct a table to find the limit of each. Think of the graph mentally as well to help with finding the limit.

Ex. 7	lim (5x)	Ex. 8 lim 1,	′(x+1)		
	x→0	x→-	1+		
		x→-	1-		
		x→	-1		
Ex. 9	lim tanx/x	Ex. 10 lim	f(x), where f(x) =	x + 1	if x < 1
	x→0	x —	>1	3x - 3	$\text{if } x \geq 1$

Limits: If the limit as x approaches a from the right = the limit as x approaches a from the left then the limit as x approaches a exists.

If these two limits (from the left and from the right) are not equal then the limit does not exist. Strategies

- Make a graph of the function.
- Make a chart of values approaching the number a.
- If you know the graph is continuous then just plug in.

11.2 Finding Limits

Pre-Calculus 11.2 Finding Limits using the Properties

Review

Given a = 5i + 2j, b = 4i - 5j, find

- 1. Find the direction of vector a.
- 2. Find the magnitude of vector b.
- 3. Find ||a + b||

Objective: Finding limits using the properties of limits

$\lim_{x \to a} x = a$	$\lim_{x \to a} c = c$			
Ex 1) $\lim_{x \to 5} (12 + x)$	Ex 2) $\lim_{x \to 2} (2x - 5)(x + 3)$			

Ex 3) $\lim_{x \to -2} \sqrt{4x^2 + 5}$ Ex 4) $\lim_{x \to 3} (4x^3 + 2x^2 - 6x + 5)$

Ex 5)
$$\lim_{x \to -2} \frac{3x}{x-4}$$
 Ex 6) $\lim_{x \to 3} \frac{x^2 - x - 6}{x^2 - 9}$

Ex 7)
$$\lim_{x \to 5} \frac{2x^2 - 7x - 15}{x - 5}$$
 Ex 8) $\lim_{x \to 5} \frac{\sqrt{16 + x} - 4}{x - 5}$

$$x \rightarrow 5 \qquad x-5$$

Ex 8)
$$\lim_{x \to 0} \frac{\sqrt{10+x} - 4}{x}$$

Ex 9)
$$\lim_{x \to 9} \frac{\sqrt{x}-3}{x-9}$$
 Ex 10) $\lim_{x \to 0} \frac{\frac{1}{x+4} - \frac{1}{4}}{x}$

Ex 11)
$$f(x) = \begin{cases} x^2 + 5 & \text{if } x < 2\\ 3x + 1 & \text{if } x \ge 2 \end{cases}$$

 	 	-		
	\square			
	++	++	-	+
	++	++	-	+
		++	-	-
	 \vdash	++	_	
			_	
	++	++	-	-
		+	-	+
-				

a.
$$\lim_{x \to 2^{-}} f(x)$$
 b. $\lim_{x \to 2^{+}} f(x)$ c) $\lim_{x \to 2} f(x)$

$$\operatorname{Ex} 12) f(x) = \begin{cases} x^2 + 6 & \text{if } x < 2\\ x^3 + 2 & \text{if } x \ge 2 \end{cases} \qquad \operatorname{Ex} 13) f(x) = \begin{cases} \frac{x^3 - 64}{x - 4} & \text{if } x \ne 4\\ 7 & \text{if } x = 4 \end{cases}$$

11.3 Limits and Continuity Temp

Goal: Determine if a function is continuous at a specific number and determine where functions are discontinuous.

Review Questions: Use the graph at the right:

- 1) $\lim_{x \to 1^+} f(x) =$
- 2) $\lim_{x \to 1^{-}} f(x) =$
- 3) $\lim_{x \to 1} f(x) =$
- 4) f(1) =

Definition of a Function Continuous at Number:

- 1) f is defined at a, that is, a is in the domain of f, so that f(a) is a real number.
- 2) $\lim_{x \to a} f(x)$ exists.
- 3) $\lim_{x \to a} f(x) = f(a)$

Determine if the following functions f(x), are continuous at the given value a.

Ex. 1
$$f(x) = \frac{x-2}{x^2-4}$$
 for $a = 1$ and for $a = 2$
Ex. 2 $f(x) = \begin{cases} \frac{x^2-16}{x+4} & \text{if } x \neq -4 \\ 5 & \text{if } x = -4 \end{cases}$ for $a = -4$

Ex. 3
$$f(x) = \begin{cases} x-2 & \text{if } x \le 0\\ 3x^2 - 3x - 2 & \text{if } x > 0 \end{cases}$$
 for $a = 0$

Determine for what numbers, if any, the given function is discontinuous.

Ex. 4
$$f(x) = \frac{x-7}{x^2-5x-14}$$

Ex. 5
$$f(x) = \frac{tanx}{x}$$

Ex. 6 f(x) = 10

Ex. 7 f(x) = cotx

Ex. 8 f(x) = 3log(x)

.

Ex. 9 f(x) = 3ln(x+5)

Ex.10 $f(x) = \frac{\sin(x)}{x+6}$

11.3A - Limits and Continuity Temp

Goal: Determine if a function is continuous at a specific number and determine where functions are discontinuous.

Review Questions: Determine where each function is discontinuous.

1)
$$f(x) = \frac{x-3}{x^2+4x-21}$$

2)
$$f(x) = \frac{\cos x}{x}$$

3)
$$f(x) = \sqrt{2}$$

Recall - Definition of a Function Continuous at Number:

- 1) f is defined at a, that is, a is in the domain of f, so that f(a) is a real number.
- 2) $\lim_{x \to a} f(x)$ exists.

3)
$$\lim_{x \to a} f(x) = f(a)$$

Determine if the following function f(x), is continuous at the given value a.

Ex. 1
$$f(x) = \begin{cases} \frac{x^4 - 16}{x - 2} & \text{if } x \neq 2\\ 32 & \text{if } x = 2 \end{cases}$$
 for $a = 2$

Ex. 2
$$f(x) = \begin{cases} \sqrt{3-x} & \text{if } x \le 3\\ x^2 - 3x & \text{if } x > 3 \end{cases}$$
 for $a = 3$

Determine for what numbers, if any, the given function is discontinuous.

Ex. 3
$$f(x) = \begin{cases} 2x & \text{if } x \le 0\\ x^2 + 1 & \text{if } 0 < x \le 2\\ 7 - x & \text{if } x > 2 \end{cases}$$

Ex. 4
$$f(x) = \begin{cases} \frac{\sin 3x}{x} & \text{if } x \neq 0\\ 3 & \text{if } x = 0 \end{cases}$$
 Ex. 5 $f(x) = \begin{cases} x+1 & \text{if } x \leq 3\\ x^2-3 & \text{if } x > 3 \end{cases}$

11.4 - Introduction to Derivatives

Goal: Find the slope of a tangent line at a given point in a function and write a slope intercept equation of the tangent line.

Review Question: Determine for what numbers, if any, the following function is discontinuous.

1)
$$f(x) = \begin{cases} x^2 & \text{if } x < -2 \\ -x + 2 & \text{if } -2 \le x < 1 \\ 3x & \text{if } x \ge 1 \end{cases}$$

Consider the following graph:

How do we find the slope of the line that connect the points (2,1) and (8,8)? This is called a secant line. What changes if we connect from (2,1) to (6,4)? From (2,1) to (4,2)? What if I want to find the slope at the single point (2,1)?

Consider the situation in general terms...

To find the slope at a single point (tangent line), let the horizontal distance go to zero or find the limit as *h* approaches zero.

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

This is also called the instantaneous rate of change of f with respect to x at a.

Ex. 1 Find the slope of the tangent line to the graph of $f(x) = x^2 + x$ at (2,6). Then find the slope-intercept equation of the tangent line.

Ex. 2 Find the slope of the tangent line to the graph of $f(x) = 2x^2 + x - 2$ at (1,1). Then find the slope-intercept equation of the tangent line.

Ex. 3 Find the slope of the tangent line to the graph of $f(x) = \sqrt{x}$ at (4,2). Then find the slope-intercept equation of the tangent line.

Ex. 4 Find the slope of the tangent line to the graph of $f(x) = \frac{3}{x}$ at (1,3). Then find the slope-intercept equation of the tangent line.

Goal: Find the derivative of a function and use it to find the slope of tangent lines.

Review Question: Find the slope of the tangent line to the graph of $f(x) = x^3$ at (2,8).

Definition of the Derivative of a Function:

For a function f(x), the derivative of f at x, denoted by f'(x) read "f prime of x" is defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

provided that this limit exists. The derivative of a function gives the slope of the function for any value of x in the domain of f'(x).

Ex. 1 Find the derivative of $f(x) = x^2 + 3x$ at x. Then find the slope of the tangent line of f(x) at x = -2 and $x = -\frac{3}{2}$.

Ex. 2 Find f'(x) of $f(x) = x^3 - 2$ at x. Then find the slope of the tangent line of f(x) at x = -1 and x = 1.

Ex. 3 Find the derivative of $f(x) = \sqrt{x} + 2$ at x. Then find the slope of the tangent line of f(x) at x = 4 and x = 1.

Ex. 4 Find f'(x) of $f(x) = \frac{8}{x}$ at x. Then find the slope of the tangent line of f(x) at x = -2 and x = 1.