## Tuesday, September 26, 2017

75. 6 revolutions per second

$$= \frac{6 \text{ revolutions}}{1 \text{ second}} \cdot \frac{2\pi \text{ radians}}{1 \text{ revolutions}} = \frac{12\pi \text{ radians}}{1 \text{ seconds}}$$
$$= \frac{12\pi \text{ radians per second}}{1 \text{ radians per second}}$$

**76.** 20 revolutions per second

$$= \frac{20 \text{ revolutions}}{1 \text{ second}} \cdot \frac{2\pi \text{ radians}}{1 \text{ revolution}} = \frac{40\pi \text{ radians}}{1 \text{ second}}$$
$$= \frac{40\pi \text{ radians per second}}{1 \text{ revolution}} = \frac{40\pi \text{ radians}}{1 \text{ second}}$$

**92.** The distance that the wheel moves is given by  $s = r\theta$ . We are given that r = 80 centimeters and  $\theta = 60^{\circ}$ . The formula  $s = r\theta$  can only be used when  $\theta$  is expressed in radians.

$$60^{\circ} = 60^{\circ} \cdot \frac{\pi \text{ radians}}{180^{\circ}} = \frac{60\pi}{180} \text{ radians}$$
$$= \frac{\pi}{3} \text{ radians}$$

The length that the wheel moves is

$$s = r\theta = (80 \text{ centimeters}) \left(\frac{\pi}{3}\right) = \frac{80\pi}{3} \text{ centimeters}$$

 $\approx$  83.78 centimeters.

**98.** Linear speed is given by  $v = r\omega$ . We are given that r = 25 feet and the wheel rotates at 3 revolutions per minute. We need to convert 3 revolutions per minute to radians per minute.

3 revolutions per minute

= 3 revolutions per minute 
$$\cdot \frac{2\pi \text{ radians}}{1 \text{ revolution}}$$

 $=6\pi$  radians per minute

$$v = r\omega = (25 \text{ feet})(6\pi) \approx 471 \text{ feet per minute}$$

The linear speed of the Ferris wheel is about 471 feet per minute.

**90.** The distance that the tip of the minute hand moves is given by its arc length, s. Since  $s = r\theta$ , we begin by finding r and  $\theta$ . We are given that

r = 6 inches. The minute hand moves from 12 to 4

o'clock, or  $\frac{1}{3}$  of a complete revolution. The formula

 $s = r\theta$  can only be used when  $\theta$  is expressed in

radians. We must convert  $\frac{1}{3}$  revolution to radians.

$$\frac{1}{3} \text{ revolution} = \frac{1}{3} \text{ revolution} \cdot \frac{2\pi \text{ radians}}{1 \text{ revolution}}$$
$$= \frac{2\pi}{3} \text{ radians}$$

The distance the tip of the minute hand moves is

$$s = r\theta = (6 \text{ inches}) \left(\frac{2\pi}{3}\right) = \frac{12\pi}{3} \text{ inches}$$

 $=4\pi$  inches  $\approx 12.57$  inches.

97. Linear speed is given by  $v = r\omega$ . We are given that

$$\omega = \frac{\pi}{12}$$
 radians per hour and

$$r = 4000$$
 miles. Therefore,

$$v = r\omega = (4000 \text{ miles}) \left(\frac{\pi}{12}\right)$$

$$= \frac{4000\pi}{12}$$
 miles per hour

The linear speed is about 1047 miles per hour.

**99.** Linear speed is given by  $v = r\omega$ . We are given that r = 12 feet and the wheel rotates at 20 revolutions per minute.

20 revolutions per minute

= 20 revolutions per minute 
$$\cdot \frac{2\pi \text{ radians}}{1 \text{ revolution}}$$

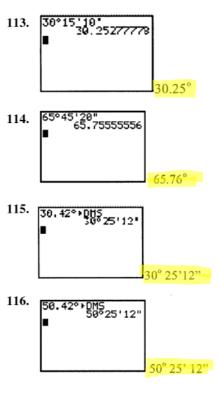
= 
$$40\pi$$
 radians per minute

$$v = r\omega = (12 \text{ feet})(40\pi)$$

The linear speed of the wheel is about 1508 feet per minute.

**100.** Begin by converting 2.5 revolutions per minute to radians per minute.

2.5 revolutions per minute


= 2.5 revolutions per minute  $\frac{2\pi \text{ radians}}{1 \text{ revolution}}$ 

 $=5\pi$  radians per minute

The linear speed of the animals in the outer rows is  $v = r\omega = (20 \text{ feet})(5\pi) \approx 100 \text{ feet per minute}$ 

The linear speed of the animals in the inner rows is  $v = r\omega = (10 \text{ feet})(5\pi) \approx 50 \text{ feet per minute}$ 

The difference is  $100\pi - 50\pi = 50\pi$  feet per minute or about 157.08 feet per minute.



Screen clipping taken: 9/29/2017 8:43 AM