4.4 HW Answers

10. $\theta=\pi$ radians

The terminal side of the angle is on the negative x axis. Select the point $P=(-1,0): x=-1, y=0, r=1$
Apply the definition of the tangent function.
$\tan \pi=\frac{y}{x}=\frac{0}{-1}=0$
12. $\theta=\pi$ radians

The terminal side of the angle is on the negative x axis. Select the point $P=(-1,0): x=-1, y=0, r=1$ Apply the definition of the cosecant function.
$\csc \pi=\frac{r}{y}=\frac{1}{0}$, undefined
14. $\theta=\frac{3 \pi}{2}$ radians

The terminal side of the angle is on the negative y axis. Select the point $P=(0,-1): x=0, y=-1, r=1$ Apply the definition of the cosine function.
$\cos \frac{3 \pi}{2}=\frac{x}{r}=\frac{0}{1}=0$
22. Because $\cot \theta>0, \theta$ cannot lie in quadrant II or quadrant IV; the cotangent function is negative in those two quadrants. Thus, with $\cot \theta>0, \theta$ lies in quadrant I or quadrant III. We are also given that $\sec \theta<0$. Because quadrant III is the only quadrant in which the secant is negative and the cotangent is positive, we conclude that θ lies in quadrant III.
39. Because 355° lies between 270° and 360°, it is in quadrant IV. The reference angle is $\theta^{\prime}=360^{\circ}-355^{\circ}=5^{\circ}$.
41. Because $\frac{7 \pi}{4}$ lies between $\frac{3 \pi}{2}=\frac{6 \pi}{4}$ and $2 \pi=\frac{8 \pi}{4}$, it is in quadrant IV. The reference angle is
$\theta^{\prime}=2 \pi-\frac{7 \pi}{4}=\frac{8 \pi}{4}-\frac{7 \pi}{4}=\frac{\pi}{4}$.
16. $\theta=\frac{\pi}{2}$ radians

The terminal side of the angle is on the positive y axis. Select the point $P=(0,1): x=0, y=1, r=1$ Apply the definition of the tangent function. $\tan \frac{\pi}{2}=\frac{y}{x}=\frac{1}{0}$, undefined
18. Because $\sin \theta<0, \theta$ cannot lie in quadrant I or quadrant II; the sine function is positive in those two quadrants. Thus, with $\sin \theta<0, \theta$ lies in quadrant III or quadrant IV. We are also given that $\cos \theta>0$. Because quadrant IV is the only quadrant in which the cosine is positive and the sine is negative, we conclude that θ lies in quadrant IV.
20. Because $\tan \theta<0, \theta$ cannot lie in quadrant I or quadrant III; the tangent function is positive in those two quadrants. Thus, with $\tan \theta<0, \theta$ lies in quadrant II or quadrant IV. We are also given that $\sin \theta<0$. Because quadrant IV is the only quadrant in which the sine is negative and the tangent is negative, we conclude that θ lies in quadrant IV.
45. $-150^{\circ}+360^{\circ}=210^{\circ}$

Because the angle is in quadrant III, the reference angle is $\theta^{\prime}=210^{\circ}-180^{\circ}=30^{\circ}$.
47. $-335^{\circ}+360^{\circ}=25^{\circ}$

Because the angle is in quadrant I , the reference angle is $\theta^{\prime}=25^{\circ}$.
49. Because 4.7 lies between $\pi \approx 3.14$ and $\frac{3 \pi}{2} \approx 4.71$, it is in quadrant III. The reference angle is $\theta^{\prime}=4.7-\pi \approx 1.56$.
51. $565^{\circ}-360^{\circ}=205^{\circ}$

Because the angle is in quadrant III, the reference angle is $\theta^{\prime}=205^{\circ}-180^{\circ}=25^{\circ}$.
53. $\frac{17 \pi}{6}-2 \pi=\frac{17 \pi}{6}-\frac{12 \pi}{6}=\frac{5 \pi}{6}$

Because the angle is in quadrant II, the reference
43. Because $\frac{-}{6}$ lies between $\frac{-}{2}=\frac{}{6}$ and $\pi=\frac{}{6}$, it is in quadrant II. The reference angle is
$\theta^{\prime}=\pi-\frac{5 \pi}{6}=\frac{6 \pi}{6}-\frac{5 \pi}{6}=\frac{\pi}{6}$.
55. $\frac{23 \pi}{4}-4 \pi=\frac{23 \pi}{4}-\frac{16 \pi}{4}=\frac{7 \pi}{4}$

Because the angle is in quadrant IV, the reference
angle is $\theta^{\prime}=2 \pi-\frac{7 \pi}{4}=\frac{\pi}{4}$.
57. $-\frac{11 \pi}{4}+4 \pi=-\frac{11 \pi}{4}+\frac{16 \pi}{4}=\frac{5 \pi}{4}$

Because the angle is in quadrant III, the reference angle is $\theta^{\prime}=\frac{5 \pi}{4}-\pi=\frac{\pi}{4}$.
59. $-\frac{25 \pi}{6}+6 \pi=-\frac{25 \pi}{6}+\frac{36 \pi}{6}=\frac{11 \pi}{6}$

Because the angle is in quadrant IV, the reference
angle is $\theta^{\prime}=2 \pi-\frac{11 \pi}{6}=\frac{\pi}{6}$.
71. $\frac{9 \pi}{4}$ lies in quadrant I. The reference angle is
$\theta^{\prime}=\frac{9 \pi}{4}-2 \pi=\frac{9 \pi}{4}-\frac{8 \pi}{4}=\frac{\pi}{4}$.
$\tan \frac{\pi}{4}=1$
Because the tangent is positive in quadrant I,
$\tan \frac{9 \pi}{4}=\tan \frac{\pi}{4}=1$
73. -240° lies in quadrant II. The reference angle is $\theta^{\prime}=240^{\circ}-180^{\circ}=60^{\circ}$.
$\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
Because the sine is positive in quadrant II,
$\sin \left(-240^{\circ}\right)=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$.
53. $\frac{17 \pi}{6}-2 \pi=\frac{17 \pi}{6}-\frac{12 \pi}{6}=\frac{5 \pi}{6}$

Because the angle is in quadrant II, the reference angle is $\theta^{\prime}=\pi-\frac{5 \pi}{6}=\frac{\pi}{6}$.
67. $\frac{2 \pi}{3}$ lies in quadrant II. The reference angle is
$\theta^{\prime}=\pi-\frac{2 \pi}{3}=\frac{3 \pi}{3}-\frac{2 \pi}{3}=\frac{\pi}{3}$.
$\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$
Because the sine is positive in quadrant II,
$\sin \frac{2 \pi}{3}=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$.
69. $\frac{7 \pi}{6}$ lies in quadrant III. The reference angle is
$\theta^{\prime}=\frac{7 \pi}{6}-\pi=\frac{7 \pi}{6}-\frac{6 \pi}{6}=\frac{\pi}{6}$.
$\csc \frac{\pi}{6}=2$
Because the cosecant is negative in quadrant III, $\csc \frac{7 \pi}{6}=-\csc \frac{\pi}{6}=-2$.
75. $-\frac{\pi}{4}$ lies in quadrant IV. The reference angle is
$\theta^{\prime}=\frac{\pi}{4}$.
$\tan \frac{\pi}{4}=1$
Because the tangent is negative in quadrant IV,

$$
\tan \left(-\frac{\pi}{4}\right)=-\tan \frac{\pi}{4}=-1
$$

77. $\sec 495^{\circ}=\sec 135^{\circ}=-\sqrt{2}$
78. $\cot \frac{19 \pi}{6}=\cot \frac{7 \pi}{6}=\sqrt{3}$
79. $\cos \frac{23 \pi}{4}=\cos \frac{7 \pi}{4}=\frac{\sqrt{2}}{2}$
80. $\tan \left(-\frac{17 \pi}{6}\right)=\tan \frac{7 \pi}{6}=\frac{\sqrt{3}}{3}$
81. $\sin \left(-\frac{17 \pi}{3}\right)=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$
