4.4 HW Answers

Tuesday, October 17, 2017 3:02 P

10. $\theta = \pi$ radians

The terminal side of the angle is on the negative *x*-axis. Select the point P = (-1, 0): x = -1, y = 0, r = 1 Apply the definition of the tangent function.

$$\tan \pi = \frac{y}{x} = \frac{0}{-1} = 0$$

12. $\theta = \pi$ radians

The terminal side of the angle is on the negative x-axis. Select the point P = (-1, 0): x = -1, y = 0, r = 1 Apply the definition of the cosecant function.

$$\csc \pi = \frac{r}{v} = \frac{1}{0}$$
, undefined

14.
$$\theta = \frac{3\pi}{2}$$
 radians

The terminal side of the angle is on the negative *y*-axis. Select the point P = (0, -1): x = 0, y = -1, r = 1 Apply the definition of the cosine function.

$$\cos \frac{3\pi}{2} = \frac{x}{r} = \frac{0}{1} = 0$$

22. Because $\cot \theta > 0$, θ cannot lie in quadrant II or quadrant IV; the cotangent function is negative in those two quadrants. Thus, with $\cot \theta > 0$, θ lies in quadrant I or quadrant III. We are also given that $\sec \theta < 0$. Because quadrant III is the only quadrant in which the secant is negative and the cotangent is positive, we conclude that θ lies in quadrant III.

39. Because 355° lies between 270° and 360°, it is in quadrant IV. The reference angle is
$$\theta' = 360^{\circ} - 355^{\circ} = 5^{\circ}$$
.

41. Because
$$\frac{7\pi}{4}$$
 lies between $\frac{3\pi}{2} = \frac{6\pi}{4}$ and $2\pi = \frac{8\pi}{4}$, it is in quadrant IV. The reference angle is
$$\theta' = 2\pi - \frac{7\pi}{4} = \frac{8\pi}{4} - \frac{7\pi}{4} = \frac{\pi}{4}.$$

43. Because
$$\frac{5\pi}{6}$$
 lies between $\frac{\pi}{2} = \frac{3\pi}{6}$ and $\pi = \frac{6\pi}{6}$, it is in quadrant II. The reference angle is

16.
$$\theta = \frac{\pi}{2}$$
 radians

The terminal side of the angle is on the positive y-axis. Select the point P = (0, 1): x = 0, y = 1, r = 1 Apply the definition of the tangent function.

$$\tan \frac{\pi}{2} = \frac{y}{x} = \frac{1}{0}$$
, undefined

18. Because $\sin \theta < 0$, θ cannot lie in quadrant I or quadrant II; the sine function is positive in those two quadrants. Thus, with $\sin \theta < 0$, θ lies in quadrant III or quadrant IV. We are also given that $\cos \theta > 0$. Because quadrant IV is the only quadrant in which the cosine is positive and the sine is negative, we conclude that θ lies in quadrant IV.

20. Because
$$\tan \theta < 0$$
, θ cannot lie in quadrant I or quadrant III; the tangent function is positive in those two quadrants. Thus, with $\tan \theta < 0$, θ lies in quadrant II or quadrant IV. We are also given that $\sin \theta < 0$. Because quadrant IV is the only quadrant in which the sine is negative and the tangent is negative, we conclude that θ lies in quadrant IV.

45.
$$-150^{\circ} + 360^{\circ} = 210^{\circ}$$

Because the angle is in quadrant III, the reference angle is $\theta' = 210^{\circ} - 180^{\circ} = 30^{\circ}$.

47.
$$-335^{\circ} + 360^{\circ} = 25^{\circ}$$

Because the angle is in quadrant I, the reference angle is $\theta' = 25^{\circ}$.

49. Because 4.7 lies between
$$\pi \approx 3.14$$
 and $\frac{3\pi}{2} \approx 4.71$, it is in quadrant III. The reference angle is $\theta' = 4.7 - \pi \approx 1.56$.

51.
$$565^{\circ} - 360^{\circ} = 205^{\circ}$$

Because the angle is in quadrant III, the reference angle is $\theta' = 205^{\circ} - 180^{\circ} = 25^{\circ}$.

53.
$$\frac{17\pi}{6} - 2\pi = \frac{17\pi}{6} - \frac{12\pi}{6} = \frac{5\pi}{6}$$
Because the angle is in quadrant II, the reference

43. Because
$$\frac{1}{6}$$
 lies between $\frac{1}{2} = \frac{1}{6}$ and $\pi = \frac{1}{6}$, it is in quadrant II. The reference angle is
$$\theta' = \pi - \frac{5\pi}{6} = \frac{6\pi}{6} - \frac{5\pi}{6} = \frac{\pi}{6}.$$

$$55. \quad \frac{23\pi}{4} - 4\pi = \frac{23\pi}{4} - \frac{16\pi}{4} = \frac{7\pi}{4}$$

Because the angle is in quadrant IV, the reference angle is $\theta' = 2\pi - \frac{7\pi}{4} = \frac{\pi}{4}$.

$$57. \quad -\frac{11\pi}{4} + 4\pi = -\frac{11\pi}{4} + \frac{16\pi}{4} = \frac{5\pi}{4}$$

Because the angle is in quadrant III, the reference angle is $\theta' = \frac{5\pi}{4} - \pi = \frac{\pi}{4}$.

59.
$$-\frac{25\pi}{6} + 6\pi = -\frac{25\pi}{6} + \frac{36\pi}{6} = \frac{11\pi}{6}$$

Because the angle is in quadrant IV, the reference angle is $\theta' = 2\pi - \frac{11\pi}{6} = \frac{\pi}{6}$.

71.
$$\frac{9\pi}{4}$$
 lies in quadrant I. The reference angle is

$$\theta' = \frac{9\pi}{4} - 2\pi = \frac{9\pi}{4} - \frac{8\pi}{4} = \frac{\pi}{4}$$
.

$$\tan \frac{\pi}{4} =$$

Because the tangent is positive in quadrant I,

$$\tan \frac{9\pi}{4} = \tan \frac{\pi}{4} = 1$$

73.
$$-240^{\circ}$$
 lies in quadrant II. The reference angle is $\theta' = 240^{\circ} - 180^{\circ} = 60^{\circ}$.

$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$

Because the sine is positive in quadrant II,

$$\sin(-240^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2}$$
.

53.
$$\frac{17\pi}{6} - 2\pi = \frac{17\pi}{6} - \frac{12\pi}{6} = \frac{5\pi}{6}$$

Because the angle is in quadrant II, the reference angle is $\theta' = \pi - \frac{5\pi}{6} = \frac{\pi}{6}$.

67.
$$\frac{2\pi}{3}$$
 lies in quadrant II. The reference angle is

$$\theta' = \pi - \frac{2\pi}{3} = \frac{3\pi}{3} - \frac{2\pi}{3} = \frac{\pi}{3}$$
.

$$\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

Because the sine is positive in quadrant II,

$$\sin\frac{2\pi}{3} = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}.$$

69.
$$\frac{7\pi}{6}$$
 lies in quadrant III. The reference angle is

$$\theta' = \frac{7\pi}{6} - \pi = \frac{7\pi}{6} - \frac{6\pi}{6} = \frac{\pi}{6}$$
.

$$\csc\frac{\pi}{6} = 2$$

Because the cosecant is negative in quadrant III,

$$\csc\frac{7\pi}{6} = -\csc\frac{\pi}{6} = -2.$$

75.
$$-\frac{\pi}{4}$$
 lies in quadrant IV. The reference angle is

$$\theta' = \frac{\pi}{4}$$

$$\tan \frac{\pi}{4} = 1$$

Because the tangent is negative in quadrant IV,

$$\tan\left(-\frac{\pi}{4}\right) = -\tan\frac{\pi}{4} = -1$$

77.
$$\sec 495^\circ = \sec 135^\circ = -\sqrt{2}$$

79.
$$\cot \frac{19\pi}{6} = \cot \frac{7\pi}{6} = \sqrt{3}$$

81.
$$\cos \frac{23\pi}{4} = \cos \frac{7\pi}{4} = \frac{\sqrt{2}}{2}$$

83.
$$\tan\left(-\frac{17\pi}{6}\right) = \tan\frac{7\pi}{6} = \frac{\sqrt{3}}{3}$$

85.
$$\sin\left(-\frac{17\pi}{3}\right) = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$$