4.4A Homework Answers

Thursday, October 19, 2017 6:48 AM

7. We need values for x, y, and r. Because P = (-2, -5)is a point on the terminal side of θ , x = -2 and y = -5. Furthermore, $r = \sqrt{x^2 + y^2} = \sqrt{(-2)^2 + (-5)^2} = \sqrt{4 + 25} = \sqrt{29}$ Now

trigonometric functions of θ .

$$\sin \theta = \frac{y}{r} = \frac{-5}{\sqrt{29}} = \frac{-5}{\sqrt{29}} \cdot \frac{\sqrt{29}}{\sqrt{29}} = \frac{5\sqrt{29}}{29}$$

$$\cos \theta = \frac{x}{r} = \frac{-2}{\sqrt{29}} = \frac{-2}{\sqrt{29}} \cdot \frac{\sqrt{29}}{\sqrt{29}} = -\frac{2\sqrt{29}}{29}$$

$$\tan \theta = \frac{y}{x} = \frac{-5}{-2} = \frac{5}{2}$$

$$\csc \theta = \frac{r}{y} = \frac{\sqrt{29}}{-5} = -\frac{\sqrt{29}}{5}$$

$$\sec \theta = \frac{r}{x} = \frac{\sqrt{29}}{-2} = -\frac{\sqrt{29}}{2}$$

$$\cot \theta = \frac{x}{y} = \frac{-2}{-5} = \frac{2}{5}$$

27. Because $270^{\circ} < \theta < 360^{\circ}$, θ is in quadrant IV. In quadrant IV *x* is positive and *y* is negative. Thus,

$$\cos \theta = \frac{8}{17} = \frac{x}{r}, x = 8,$$

r = 17. Furthermore
 $x^{2} + y^{2} = r^{2}$
 $8^{2} + y^{2} = 17^{2}$
 $y^{2} = 289 - 64 = 225$
 $y = -\sqrt{225} = -15$

Now that we know *x*, *y*, and *r*, we can find the remaining trigonometric functions of θ .

$$\sin \theta = \frac{y}{r} = \frac{-15}{17} = -\frac{15}{17}$$
$$\tan \theta = \frac{y}{x} = \frac{-15}{8} = -\frac{15}{8}$$
$$\csc \theta = \frac{r}{y} = \frac{17}{-15} = -\frac{17}{15}$$
$$\sec \theta = \frac{r}{x} = \frac{17}{8}$$
$$\cot \theta = \frac{x}{y} = \frac{8}{-15} = -\frac{8}{15}$$

23. In quadrant III x is negative and y is negative. Thus, $\cos\theta = -\frac{3}{5} = \frac{x}{r} = \frac{-3}{5}, x = -3, r = 5.$ Furthermore, $r^{2} = x^{2} + y^{2}$ $5^{2} = (-3)^{2} + y^{2}$ $y^{2} = 25 - 9 = 16$ $y = -\sqrt{16} = -4$ Now that we know x y, and r, we can find the

Now that we know *x*, *y*, and *r*, we can find the remaining trigonometric functions of θ .

$$\sin \theta = \frac{y}{r} = \frac{-4}{5} = \frac{4}{5}$$
$$\tan \theta = \frac{y}{x} = \frac{-4}{-3} = \frac{4}{3}$$
$$\csc \theta = \frac{r}{y} = \frac{5}{-4} = -\frac{5}{4}$$
$$\sec \theta = \frac{r}{x} = \frac{5}{-3} = -\frac{5}{3}$$
$$\cot \theta = \frac{x}{y} = \frac{-3}{-4} = \frac{3}{4}$$

29. Because the tangent is negative and the sine is positive, θ lies in quadrant II. In quadrant II, *x* is negative and *y* is positive. Thus,

 $\tan \theta = -\frac{2}{3} = \frac{y}{x} = \frac{2}{-3}, x = -3, y = 2$. Furthermore, $r = \sqrt{x^2 + y^2} = \sqrt{(-3)^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}$ Now that we know *x*, *y*, and *r*, we can find the

remaining trigonometric functions of
$$\theta$$
.
 $\sin \theta = \frac{y}{r} = \frac{2}{\sqrt{13}} = \frac{2}{\sqrt{13}} \cdot \frac{\sqrt{13}}{\sqrt{13}} = \frac{2\sqrt{13}}{13}$
 $\cos \theta = \frac{x}{r} = \frac{-3}{\sqrt{13}} = \frac{-3}{\sqrt{13}} \cdot \frac{\sqrt{13}}{\sqrt{13}} = -\frac{3\sqrt{13}}{13}$
 $\csc \theta = \frac{r}{y} = \frac{\sqrt{13}}{2}$
 $\sec \theta = \frac{r}{x} = \frac{\sqrt{13}}{-3} = -\frac{\sqrt{13}}{3}$
 $\cot \theta = \frac{x}{y} = \frac{-3}{2} = -\frac{3}{2}$

87.
$$\sin\frac{\pi}{3}\cos\pi - \cos\frac{\pi}{3}\sin\frac{3\pi}{2}$$

= $\left(\frac{\sqrt{3}}{2}\right)(-1) - \left(\frac{1}{2}\right)(-1)$
= $-\frac{\sqrt{3}}{2} + \frac{1}{2}$
= $\frac{1-\sqrt{3}}{2}$

88.
$$\sin\frac{\pi}{4}\cos 0 - \sin\frac{\pi}{6}\cos\pi$$

= $\left(\frac{\sqrt{2}}{2}\right)(1) - \left(\frac{1}{2}\right)(-1)$
= $\frac{\sqrt{2}}{2} + \frac{1}{2}$
= $\frac{\sqrt{2}+1}{2}$

89.
$$\sin\frac{11\pi}{4}\cos\frac{5\pi}{6} + \cos\frac{11\pi}{4}\sin\frac{5\pi}{6}$$

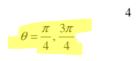
= $\left(\frac{\sqrt{2}}{2}\right)\left(-\frac{\sqrt{3}}{2}\right) + \left(-\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right)$
= $-\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}$
= $-\frac{\sqrt{6} + \sqrt{2}}{4}$

90.
$$\sin\frac{17\pi}{3}\cos\frac{5\pi}{4} + \cos\frac{17\pi}{3}\sin\frac{5\pi}{4}$$

= $\left(-\frac{\sqrt{3}}{2}\right)\left(-\frac{\sqrt{2}}{2}\right) + \left(\frac{1}{2}\right)\left(-\frac{\sqrt{2}}{2}\right)$
= $\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}$
= $\frac{\sqrt{6} - \sqrt{2}}{4}$

91.
$$\sin \frac{3\pi}{2} \tan \left(-\frac{15\pi}{4}\right) - \cos \left(-\frac{5\pi}{3}\right)$$

= $(-1)(1) - \left(\frac{1}{2}\right)$
= $-1 - \frac{1}{2}$
= $-\frac{2}{2} - \frac{1}{2}$
= $-\frac{3}{2}$


92.
$$\sin \frac{3\pi}{2} \tan \left(-\frac{8\pi}{3}\right) + \cos \left(-\frac{5\pi}{6}\right)$$
$$= (-1)\left(\sqrt{3}\right) + \left(-\frac{\sqrt{3}}{2}\right)$$
$$= -\sqrt{3} - \frac{\sqrt{3}}{2}$$
$$= -\frac{2\sqrt{3}}{2} - \frac{\sqrt{3}}{2}$$
$$= -\frac{3\sqrt{3}}{2}$$

99. $\sin \theta = \frac{\sqrt{2}}{2}$ when the reference angle is $\frac{\pi}{4}$ and θ is in quadrants I or II.

$$\begin{array}{c} \underline{QI} & \underline{QII} \\ \theta = \frac{\pi}{4} & \theta = \pi - \frac{\pi}{4} \\ \theta = \frac{\pi}{4}, \frac{3\pi}{4} \end{array}$$

100. $\cos \theta = \frac{1}{2}$ when the reference angle is $\frac{\pi}{3}$ and θ is in quadrants I or IV. $\begin{array}{c} \underline{QI} & \underline{QIV} \\ \theta = \frac{\pi}{3} & \theta = 2\pi - \frac{\pi}{3} \\ = \frac{5\pi}{3} \end{array}$ $\theta = \frac{\pi}{3}, \frac{5\pi}{3}$

101. $\sin \theta = -\frac{\sqrt{2}}{2}$ when the reference angle is $\frac{\pi}{4}$ and θ is in quadrants III or IV. <u>QIII</u> <u>QIV</u> $\theta = \pi + \frac{\pi}{4}$ $\theta = 2\pi - \frac{\pi}{4}$ $= \frac{5\pi}{4}$ $= \frac{7\pi}{4}$ $\theta = \frac{5\pi}{4}, \frac{7\pi}{4}$

102. $\cos \theta = -\frac{1}{2}$ when the reference angle is $\frac{\pi}{3}$ and θ is in quadrants II or III. $\begin{array}{c} \underline{QII} & \underline{QIII} \\ \theta = \pi - \frac{\pi}{3} & \theta = \pi + \frac{\pi}{3} \\ = \frac{2\pi}{3} & = \frac{4\pi}{3} \\ \theta = \frac{2\pi}{3}, \frac{4\pi}{3} \end{array}$

104.
$$\tan \theta = -\frac{\sqrt{3}}{3}$$
 when the reference angle is $\frac{\pi}{6}$ and
 θ is in quadrants II or IV.

$$\frac{\text{QII}}{\theta = \pi - \frac{\pi}{6}} \qquad \theta = 2\pi - \frac{\pi}{6}$$

$$= \frac{5\pi}{6} \qquad = \frac{11\pi}{6}$$

$$\theta = \frac{5\pi}{6}, \frac{11\pi}{6}$$

103. $\tan \theta = -\sqrt{3}$ when the reference angle is $\frac{\pi}{3}$ and θ is in quadrants II or IV.