5.5 HW Answers

Friday, December 8, 2017 2:08 PM

2.
$$\tan \frac{\pi}{3} = \sqrt{3}$$

 $\sqrt{3} = \sqrt{3}$ is true.
Thus, $\frac{\pi}{3}$ is a solution.

4.
$$\sin \frac{\pi}{3} = \frac{\sqrt{2}}{2}$$

$$\frac{\sqrt{3}}{2} = \frac{\sqrt{2}}{2} \text{ is false.}$$
Thus, $\frac{\pi}{3}$ is not a solution.

6.
$$\cos \frac{4\pi}{3} = -\frac{1}{2}$$
$$-\frac{1}{2} = -\frac{1}{2} \text{ is true.}$$
Thus, $\frac{4\pi}{3}$ is a solution.

11.
$$\sin x = \frac{\sqrt{3}}{2}$$

Because $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$, the solutions
for $\sin x = \frac{\sqrt{3}}{2}$ in $[0, 2\pi)$ are
$$x = \frac{\pi}{3}$$

$$\pi = 3\pi$$

Because the period of the sine function is 2π , the solutions are given by

$$x = \frac{\pi}{3} + 2n\pi \qquad \text{or} \qquad x = \frac{2\pi}{3} + 2n\pi$$

where n is any integer.

8.
$$\cos \frac{2\pi}{3} = -\frac{1}{2}$$

 $-\frac{1}{2} = -\frac{1}{2}$ is true.
Thus, $\frac{2\pi}{3}$ is a solution.

10.
$$\cos \frac{\pi}{6} + 2 = \sqrt{3} \cdot \sin \frac{\pi}{6}$$

 $\frac{\sqrt{3}}{2} + 2 = \sqrt{3} \cdot \frac{1}{2}$
 $\frac{4 + \sqrt{3}}{2} = \frac{\sqrt{3}}{2}$ is false.

Thus, $\frac{\pi}{6}$ is not a solution.

12.
$$\cos x = \frac{\sqrt{3}}{2}$$

Because $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$, the solutions for $\cos x = \frac{\sqrt{3}}{2}$ in $[0, 2\pi)$ are
$$x = \frac{\pi}{6}$$

$$x = 2\pi - \frac{\pi}{6} = \frac{12\pi}{6} - \frac{\pi}{6}$$

Because the period of the cosine function is 2π , the solutions are given by

$$x = \frac{\pi}{6} + 2n\pi$$
 or $x = \frac{11\pi}{6} + 2n\pi$

where n is any integer.

13.
$$\tan x = 1$$

Because $\tan \frac{\pi}{4} = 1$, the solution for $\tan x = 1$ in $(0, \pi)$ is

14.
$$\tan x = \sqrt{3}$$

Because $\tan \frac{\pi}{3} = \sqrt{3}$, the solution for $\tan x = \sqrt{3}$ in $[0, \pi)$ is
$$x = \frac{\pi}{3}$$

Because the period of the tangent function is π , the solutions are given by

$$x = \frac{\pi}{4} + n\pi$$

where n is any integer.

for
$$\tan x = \sqrt{3}$$
 in $(0, \pi)$ is
$$x = \frac{\pi}{3}$$

Because the period of the tangent function is π , the solutions are given by

$$x = \frac{\pi}{3} + n\pi$$
 where *n* is any integer.

15.
$$\cos x = -\frac{1}{2}$$

Because $\cos \frac{\pi}{3} = \frac{1}{2}$, the solutions

for
$$\cos x = -\frac{1}{2} \text{ in } [0, 2\pi) \text{ are}$$

for
$$\cos x = -\frac{1}{2}$$
 in $[0, 2\pi)$ are
$$x = \pi - \frac{\pi}{3} = \frac{3\pi}{3} - \frac{\pi}{3} = \frac{2\pi}{3}$$

$$x = \pi + \frac{\pi}{3} = \frac{3\pi}{3} + \frac{\pi}{3} = \frac{4\pi}{3}$$

Because the period of the cosine function is 2π , the solutions are given by

$$x = \frac{2\pi}{3} + 2n\pi \quad \text{or} \quad x = \frac{4\pi}{3} + 2n\pi$$

where n is any integer.

16.
$$\sin x = -\frac{\sqrt{2}}{2}$$

Because $\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$, the solutions

for
$$\sin x = -\frac{\sqrt{2}}{2}$$
 in $[0, 2\pi)$ are

$$x = \pi + \frac{\pi}{4} = \frac{4\pi}{4} + \frac{\pi}{4} = \frac{5\pi}{4}$$

$$x = 2\pi - \frac{\pi}{4} = \frac{8\pi}{4} - \frac{\pi}{4} = \frac{7\pi}{4}.$$

Because the period of the sine function is 2π , the solutions are given by

$$x = \frac{5\pi}{4} + 2n\pi$$
 or $x = \frac{7\pi}{4} + 2n\pi$

where n is any integer.

17.
$$\tan x = 0$$

Because $\tan 0 = 0$, the solution

for
$$\tan x = 0$$
 in $[0, \pi)$ is

$$x = 0$$
.

Because the period of the tangent function is π , the solutions are given by

$$x = 0 + n\pi = n\pi$$

where n is any integer.

19.
$$2\cos x + \sqrt{3} = 0$$

$$2\cos x = -\sqrt{3}$$

$$\cos x = -\frac{\sqrt{3}}{2}$$

Because $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$, the solutions

for
$$\cos x = -\frac{\sqrt{3}}{2}$$
 in $[0, 2\pi)$ are
$$x = \pi - \frac{\pi}{6} = \frac{6\pi}{6} - \frac{\pi}{6} = \frac{5\pi}{6}$$

$$x = \pi + \frac{\pi}{6} = \frac{6\pi}{6} + \frac{\pi}{6} = \frac{7\pi}{6}$$

$$x = \pi - \frac{\pi}{6} = \frac{6\pi}{6} - \frac{\pi}{6} = \frac{5\pi}{6}$$

$$x = \pi + \frac{\pi}{6} = \frac{6\pi}{6} + \frac{\pi}{6} = \frac{7\pi}{6}$$

Because the period of the cosine function is 2π , the solutions are given by

$$x = \frac{5\pi}{6} + 2n\pi$$
 or $x = \frac{7\pi}{6} + 2n\pi$

where n is any integer.

18.
$$\sin x = 0$$

Because $\sin 0 = 0$, the solutions

for
$$\sin x = 0$$
 in $[0, 2\pi)$ are

$$x = 0$$

$$x = \pi + 0 = \pi$$
.

Because the period of the sine function is 2π , the solutions are given by

$$x = 0 + n\pi = n\pi$$
 or $x = \pi + 2n\pi$

where n is any integer.

20.
$$2\sin x + \sqrt{3} = 0$$

$$21. 4\sin\theta - 1 = 2\sin\theta$$

20.
$$2\sin x + \sqrt{3} = 0$$

$$2\sin x = -\sqrt{3}$$

$$\sin x = -\frac{\sqrt{3}}{2}$$

Because $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$, the solutions

for $\sin x = -\frac{\sqrt{3}}{2}$ in $[0, 2\pi)$ are

$$x = \pi + \frac{\pi}{3} = \frac{3\pi}{3} + \frac{\pi}{3} = \frac{4\pi}{3}$$

$$x = 2\pi - \frac{\pi}{3} = \frac{6\pi}{3} - \frac{\pi}{3} = \frac{5\pi}{3}.$$

Because the period of the sine function is 2π , the solutions are given by

$$x = \frac{4\pi}{3} + 2n\pi$$
 or $x = \frac{5\pi}{3} + 2n\pi$

where n is any integer.

22. $5\sin\theta+1=3\sin\theta$

$$5\sin\theta - 3\sin\theta = -1$$

$$2\sin\theta = -1$$

$$\sin\theta = -\frac{1}{2}$$

Because $\sin \frac{\pi}{6} = \frac{1}{2}$, the solutions

for $\sin \theta = -\frac{1}{2}$ in $[0, 2\pi)$ are

$$\theta = \pi + \frac{\pi}{6} = \frac{6\pi}{6} + \frac{\pi}{6} = \frac{7\pi}{6}$$

$$\theta = \pi + \frac{\pi}{6} = \frac{6\pi}{6} + \frac{\pi}{6} = \frac{7\pi}{6}$$

$$\theta = 2\pi - \frac{\pi}{6} = \frac{12\pi}{6} - \frac{\pi}{6} = \frac{11\pi}{6}$$

Because the period of the sine function is 2π , the solutions are given by

$$\theta = \frac{7\pi}{6} + 2n\pi$$
 or $\theta = \frac{11\pi}{6} + 2n\pi$

where n is any integer.

24.
$$7\cos\theta + 9 = -2\cos\theta$$

$$7\cos\theta + 2\cos\theta = -9$$

$$9\cos\theta = -9$$

$$\cos \theta = -1$$

Because $\cos \pi = -1$, the solution

for
$$\cos \theta = -1$$
 in $[0, 2\pi)$ is

$$x = \pi$$
.

Because the period of the cosine function is 2π , the solutions are given by

21.
$$4\sin\theta - 1 = 2\sin\theta$$

$$4\sin\theta - 2\sin\theta = 1$$

$$2\sin\theta = 1$$

$$\sin\theta = \frac{1}{2}$$

Because $\sin \frac{\pi}{6} = \frac{1}{2}$, the solutions

for
$$\sin \theta = \frac{1}{2}$$
 in $[0, 2\pi)$ are

$$\theta \neq \frac{\pi}{6}$$

$$\theta = \pi - \frac{\pi}{6} = \frac{6\pi}{6} - \frac{\pi}{6}$$

Because the period of the sine function is 2π , the solutions are given by

$$\theta = \frac{\pi}{6} + 2n\pi$$
 or $\theta = \frac{5\pi}{6} + 2n\pi$

where n is any integer.

$$23. 3\sin\theta + 5 = -2\sin\theta$$

$$3\sin\theta + 2\sin\theta = -5$$

$$5\sin\theta = -5$$

$$\sin \theta = -1$$

Because $\sin \frac{\pi}{2} = 1$, the solutions

for
$$\sin \theta = -1$$
 in $[0, 2\pi)$ are

$$\theta = \pi + \frac{\pi}{2} = \frac{2\pi}{2} + \frac{\pi}{2} = \frac{3\pi}{2}$$

$$\theta = 2\pi - \frac{\pi}{2} = \frac{4\pi}{2} - \frac{\pi}{2} = \frac{3\pi}{2}$$

Because the period of the sine function is 2π , the solutions are given by

$$\theta = \frac{3\pi}{2} + 2n\pi$$

where n is any integer.

86. $\sin x = 0.7392$

Be sure calculator is in radian mode and find the inverse sine of 0.7392. This gives the first quadrant reference angle.

$$\theta = \sin^{-1} 0.7392 \approx 0.8319$$

The sine is positive in quadrants I and II thus,

$$x \approx 0.8319$$
 or $x \approx \pi - 0.8319$

$$x \approx 2.3097$$

87.
$$\cos x = -\frac{2}{5}$$

Because the period of the cosine function is 2π , the solutions are given by

$$\theta = \pi + 2n\pi$$

where n is any integer.

87.
$$\cos x = -\frac{2}{5}$$

Be sure calculator is in radian mode and find the inverse cosine of $+\frac{2}{5}$. This gives the first quadrant reference angle.

$$\theta = \cos^{-1}\frac{2}{5} \approx 1.1593$$

The cosine is negative in quadrants II and III thus, $x \approx \pi - 1.1593$ or $x \approx \pi + 1.1593$

$$x \approx 1.9823$$
 $x \approx 4.3009$

$$r \approx 4.3000$$

88.
$$\cos x = -\frac{4}{7}$$

Be sure calculator is in radian mode and find the inverse cosine of $+\frac{4}{7}$. This gives the first quadrant reference angle.

$$\theta = \cos^{-1}\frac{4}{7} \approx 0.9626$$

The cosine is negative in quadrants II and III thus, $x \approx \pi - 0.9626$ or $x \approx \pi + 0.9626$

$$x \approx 2.1790$$

$$x \approx 4.1041$$

89.
$$\tan x = -3$$

Be sure calculator is in radian mode and find the inverse tangent of +3. This gives the first quadrant reference angle.

$$\theta = \tan^{-1} 3 \approx 1.2490$$

The tangent is negative in quadrants II and IV thus, $x \approx \pi - 1.2490$ or $x \approx 2\pi - 1.2490$

$$x$$
 ≈ 1.8925

$$x \approx 5.0341$$

90.
$$\tan x = -5$$

Be sure calculator is in radian mode and find the inverse tangent of +5. This gives the first quadrant reference angle.

$$\theta = \tan^{-1} 5 \approx 1.3734$$

The tangent is negative in quadrants II and IV thus,

$$x \approx \pi - 1.3734$$
 or $x \approx 2\pi - 1.3734$

$$x \approx 1.7682$$

$$x \approx 4.9098$$