5.5 HW Answers

2. $\tan \frac{\pi}{3}=\sqrt{3}$

$$
\sqrt{3}=\sqrt{3} \text { is true. }
$$

Thus, $\frac{\pi}{3}$ is a solution.
4. $\sin \frac{\pi}{3}=\frac{\sqrt{2}}{2}$

$$
\frac{\sqrt{3}}{2}=\frac{\sqrt{2}}{2} \text { is false. }
$$

Thus, $\frac{\pi}{3}$ is not a solution.
6. $\cos \frac{4 \pi}{3}=-\frac{1}{2}$

$$
-\frac{1}{2}=-\frac{1}{2} \text { is true. }
$$

Thus, $\frac{4 \pi}{3}$ is a solution.
11. $\sin x=\frac{\sqrt{3}}{2}$

Because $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$, the solutions
for $\sin x=\frac{\sqrt{3}}{2}$ in $[0,2 \pi)$ are
$x=\pi-\frac{\pi}{3}=\frac{3 \pi}{3}-\frac{\pi}{3}=\frac{2 \pi}{3}$.
Because the period of the sine function is 2π, the solutions are given by

$$
x=\frac{\pi}{3}+2 n \pi \quad \text { or } \quad x=\frac{2 \pi}{3}+2 n \pi
$$

where n is any integer.
8. $\cos \frac{2 \pi}{3}=-\frac{1}{2}$
$-\frac{1}{2}=-\frac{1}{2}$ is true.
Thus, $\frac{2 \pi}{3}$ is a solution.
10. $\cos \frac{\pi}{6}+2=\sqrt{3} \cdot \sin \frac{\pi}{6}$
$\frac{\sqrt{3}}{2}+2=\sqrt{3} \cdot \frac{1}{2}$
$\frac{4+\sqrt{3}}{2}=\frac{\sqrt{3}}{2}$ is false.
Thus, $\frac{\pi}{6}$ is not a solution.
12. $\cos x=\frac{\sqrt{3}}{2}$

Because $\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$, the solutions
for $\cos x=\frac{\sqrt{3}}{2}$ in $[0,2 \pi)$ are
$x=\frac{\pi}{6}$
$x=2 \pi-\frac{\pi}{6}=\frac{12 \pi}{6}-\frac{\pi}{6}=\frac{11 \pi}{6}$.
Because the period of the cosine function is 2π, the solutions are given by

$$
x=\frac{\pi}{6}+2 n \pi \quad \text { or } \quad x=\frac{11 \pi}{6}+2 n \pi
$$

where n is any integer.
13. $\tan x=1$

Because $\tan \frac{\pi}{4}=1$, the solution
for $\tan x=1$ in $+(, \pi)$ is
$x=\left(\frac{\pi}{4}\right) \quad\left(\frac{5 \pi}{4}\right)$
14. $\tan x=\sqrt{3}$

Because $\tan \frac{\pi}{3}=\sqrt{3}$, the solution for $\tan x=\sqrt{3}$ in $-Q, \pi)$ is

for $\tan x=1$ in $+(, \pi)$ is

Because the period of the tangent function is π, the solutions are given by
$x=\frac{\pi}{4}+n \pi$
where n is any integer.
15. $\cos x=-\frac{1}{2}$

Because $\cos \frac{\pi}{3}=\frac{1}{2}$, the solutions
for $\cos x=-\frac{1}{2}$ in $[0,2 \pi)$ are
$x=\pi-\frac{\pi}{3}=\frac{3 \pi}{3}-\frac{\pi}{3}\left(=\frac{2 \pi}{3}\right)$
$x=\pi+\frac{\pi}{3}=\frac{3 \pi}{3}+\frac{\pi}{3}=\frac{4 \pi}{3}$.
Because the period of the cosine function is
2π, the solutions are given by
$x=\frac{2 \pi}{3}+2 n \pi \quad$ or $\quad x=\frac{4 \pi}{3}+2 n \pi$
where n is any integer.
17. $\tan x=0$

Because $\tan 0=0$, the solution
$x=0$,
Because the period of the tangent function is π, the solutions are given by
$x=0+n \pi=n \pi$
where n is any integer.
18. $\sin x=0$

Because $\sin 0=0$, the solutions
for $\sin x \geq 0$ in $[0,2 \pi)$ are
$x=0$
$x=\pi+0=\pi$.
Because the period of the sine function is 2π, the solutions are given by
$x=0+n \pi=n \pi$ or $x=\pi+2 n \pi$
where n is any integer.
for $\tan x=\sqrt{3}$ in $[Q, \pi)$ is
$x=\frac{\pi}{3} \quad \frac{4 \pi}{3}$
Because the period of the tangent function is π, the solutions are given by
$x=\frac{\pi}{3}+n \pi$ where n is any integer.
16. $\sin x=-\frac{\sqrt{2}}{2}$

Because $\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}$, the solutions
for $\sin x=-\frac{\sqrt{2}}{2}$ in $[0,2 \pi)$ are
$x=\pi+\frac{\pi}{4}=\frac{4 \pi}{4}+\frac{\pi}{4}=\frac{5 \pi}{4}$
$x=2 \pi-\frac{\pi}{4}=\frac{8 \pi}{4}-\frac{\pi}{4}=\frac{7 \pi}{4}$.
Because the period of the sine function is 2π, the solutions are given by
$x=\frac{5 \pi}{4}+2 n \pi \quad$ or $\quad x=\frac{7 \pi}{4}+2 n \pi$
where n is any integer.
19. $2 \cos x+\sqrt{3}=0$

$$
\begin{aligned}
2 \cos x & =-\sqrt{3} \\
\cos x & =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

Because $\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$, the solutions
for $\cos x=-\frac{\sqrt{3}}{2}$ in $[0,2 \pi)$ are
$x=\pi-\frac{\pi}{6}=\frac{6 \pi}{6}-\frac{\pi}{6}=\frac{5 \pi}{6}$
$x=\pi+\frac{\pi}{6}=\frac{6 \pi}{6}+\frac{\pi}{6}=\frac{7 \pi}{6}$.
Because the period of the cosine function is 2π, the solutions are given by
$x=\frac{5 \pi}{6}+2 n \pi \quad$ or $\quad x=\frac{7 \pi}{6}+2 n \pi$
where n is any integer.
21. $4 \sin \theta-1=2 \sin \theta$
20. $2 \sin x+\sqrt{3}=0$

$$
\begin{aligned}
2 \sin x & =-\sqrt{3} \\
\sin x & =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

Because $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$, the solutions
for $\sin x=-\frac{\sqrt{3}}{2}$ in $[0,2 \pi)$ are

$$
\begin{aligned}
& x=\pi+\frac{\pi}{3}=\frac{3 \pi}{3}+\frac{\pi}{3}=\frac{4 \pi}{3} \\
& x=2 \pi-\frac{\pi}{3}=\frac{6 \pi}{3}-\frac{\pi}{3}=\frac{5 \pi}{3} .
\end{aligned}
$$

Because the period of the sine function is 2π, the solutions are given by

$$
x=\frac{4 \pi}{3}+2 n \pi \quad \text { or } \quad x=\frac{5 \pi}{3}+2 n \pi
$$

where n is any integer.
22.

$$
\begin{aligned}
5 \sin \theta+1 & =3 \sin \theta \\
5 \sin \theta-3 \sin \theta & =-1 \\
2 \sin \theta & =-1 \\
\sin \theta & =-\frac{1}{2}
\end{aligned}
$$

Because $\sin \frac{\pi}{6}=\frac{1}{2}$, the solutions
for $\sin \theta=-\frac{1}{2}$ in $[0,2 \pi)$ are
$\theta=\pi+\frac{\pi}{6}=\frac{6 \pi}{6}+\frac{\pi}{6}=\frac{7 \pi}{6}$
$\theta=2 \pi-\frac{\pi}{6}=\frac{12 \pi}{6}-\frac{\pi}{6}=\frac{1 \pi}{6}$.
Because the period of the sine function is 2π, the solutions are given by
$\theta=\frac{7 \pi}{6}+2 n \pi \quad$ or $\quad \theta=\frac{11 \pi}{6}+2 n \pi$
where n is any integer.
21.
$\begin{aligned} 4 \sin \theta-1 & =2 \\ 4 \sin \theta-2 \sin \theta & =1\end{aligned}$

$$
\begin{aligned}
2 \sin \theta & =1 \\
\sin \theta & =\frac{1}{2}
\end{aligned}
$$

Because $\sin \frac{\pi}{6}=\frac{1}{2}$, the solutions
for $\sin \theta=\frac{1}{2}$ in $[0,2 \pi)$ are
$\theta=\frac{\pi}{6} \theta=\pi-\frac{\pi}{6}=\frac{6 \pi}{6}-\frac{\pi}{6}=\frac{5 \pi}{6}$.
Because the period of the sine function is 2π, the solutions are given by

$$
\theta=\frac{\pi}{6}+2 n \pi \quad \text { or } \quad \theta=\frac{5 \pi}{6}+2 n \pi
$$

where n is any integer.
23. $3 \sin \theta+5=-2 \sin \theta$
$3 \sin \theta+2 \sin \theta=-5$

$$
5 \sin \theta=-5
$$

$$
\sin \theta=-1
$$

Because $\sin \frac{\pi}{2}=1$, the solutions
for $\sin \theta=-1$ in $[0,2 \pi)$ are
$\theta=\pi+\frac{\pi}{2}=\frac{2 \pi}{2}+\frac{\pi}{2}=\frac{3 \pi}{2}$
$\theta=2 \pi-\frac{\pi}{2}=\frac{4 \pi}{2}-\frac{\pi}{2}=\frac{3 \pi}{2}$.
Because the period of thesine function is 2π, the solutions are given by
$\theta=\frac{3 \pi}{2}+2 n \pi$
where n is any integer.
24. $7 \cos \theta+9=-2 \cos \theta$
$7 \cos \theta+2 \cos \theta=-9$

$$
9 \cos \theta=-9
$$

$$
\cos \theta=-1
$$

Because $\cos \pi=-1$, the solution
for $\cos \theta=-1$ in $[0,2 \pi)$ is

$$
x=\pi .
$$

Because the period of the cosine function is 2π, the solutions are given by
86. $\sin x=0.7392$

Be sure calculator is in radian mode and find the inverse sine of 0.7392 . This gives the first quadrant reference angle.
$\theta=\sin ^{-1} 0.7392 \approx 0.8319$
The sine is positive in quadrants I and II thus,
$x \approx 0.8319$ or $x \approx \pi-0.8319$

$$
x \approx 2.3097
$$

87. $\cos x=-\frac{2}{2}$

Because the period of the cosine function is 2π, the solutions are given by
$\theta=\pi+2 n \pi$
where n is any integer.
87. $\cos x=-\frac{2}{5}$

Be sure calculator is in radian mode and find the inverse cosine of $+\frac{2}{5}$. This gives the first quadrant reference angle.
$\theta=\cos ^{-1} \frac{2}{5} \approx 1.1593$
The cosine is negative in quadrants II and III thus,

$$
\begin{array}{lll}
x \approx \pi-1.1593 & \text { or } & x \approx \pi+1.1593 \\
x \approx 1.9823 & & x \approx 4.3009
\end{array}
$$

88. $\cos x=-\frac{4}{7}$

Be sure calculator is in radian mode and find the inverse cosine of $+\frac{4}{7}$. This gives the first quadrant reference angle.
$\theta=\cos ^{-1} \frac{4}{7} \approx 0.9626$
The cosine is negative in quadrants II and III thus,

$$
\begin{array}{lll}
x \approx \pi-0.9626 & \text { or } & x \approx \pi+0.9626 \\
x \approx 2.1790 & & x \approx 4.1041
\end{array}
$$

89. $\tan x=-3$

Be sure calculator is in radian mode and find the inverse tangent of +3 . This gives the first quadrant reference angle.

$$
\theta=\tan ^{-1} 3 \approx 1.2490
$$

The tangent is negative in quadrants II and IV thus, $x \approx \pi-1.2490 \quad$ or $\quad x \approx 2 \pi-1.2490$
$x \approx 1.8925$ $x \approx 5.0341$
90. $\tan x=-5$

Be sure calculator is in radian mode and find the inverse tangent of +5 . This gives the first quadrant reference angle.
$\theta=\tan ^{-1} 5 \approx 1.3734$
The tangent is negative in quadrants II and IV thus,
$x \approx \pi-1.3734 \quad$ or $\quad x \approx 2 \pi-1.3734$
$x \approx 1.7682 \quad x \approx 4.9098$

