5.5B HW Answers

Tuesday, January 16, 2018 1:11 PM

40. $2\sin^2 x + \sin x - 1 = 0$ $(2\sin x - 1)(\sin x + 1) = 0$ $2\sin x - 1 = 0$ or $\sin x + 1 = 0$ $2\sin x = 1$ $\sin x = -1$ $\sin x = \frac{1}{2}$ $x = \frac{\pi}{6}$ $x = \frac{5\pi}{6}$ $x = \frac{3\pi}{2}$ The solutions in the interval $[0, 2\pi)$ are $\frac{\pi}{6}, \frac{5\pi}{6}$, and $\frac{3\pi}{2}$.

42. $\cos^2 x + 2\cos x - 3 = 0$ $(\cos x - 1)(\cos x + 3) = 0$ $\cos x - 1 = 0$ or $\cos x + 3 = 0$ $\cos x = 1$ $\cos x = -3$ x = 0 $\cos x$ cannot be less than -1. The solution in the interval $[0, 2\pi)$ is 0. 44. $2\sin^{2} x = 4\sin x + 6$ $2\sin^{2} x - 4\sin x - 6 = 0$ $(2\sin x + 2)(\sin x - 3) = 0$ $2\sin x + 2 = 0 \quad \text{or} \quad \sin x - 3 = 0$ $2\sin x = -2 \qquad \sin x = 3$ $\sin x = -1$ $x = \frac{3\pi}{2}$ $\sin x \text{ cannot be greater than 1.}$ The solution in the interval $[0, 2\pi)$ is $\frac{3\pi}{2}$.

46.	$\cos^2\theta - 1 = 0$	
	$(\cos\theta - 1)(\cos\theta + 1) = 1$	
	$\cos \theta - 1 = 0$ or $\cos \theta + 1 = 0$	
	$\cos\theta = 1$	$\cos\theta = -1$
	$\theta = 0$	$ heta=\pi$
	The solutions in the	he interval $[0, 2\pi)$ are 0 and π .

48.
$$4\sin^{2} x - 3 = 0$$
$$\sin^{2} x = \frac{3}{4}$$
$$\sin x = \pm \sqrt{\frac{3}{4}}$$
$$\sin x = \pm \frac{\sqrt{3}}{2}$$
$$\sin x = \frac{\sqrt{3}}{2} \quad \text{or} \quad \sin x = -\frac{\sqrt{3}}{2}$$
$$x = \frac{\pi}{3}, \frac{2\pi}{3} \qquad x = \frac{4\pi}{3}, \frac{5\pi}{3}$$
The solutions in the interval [0, 2\pi) are
$$\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \text{ and } \frac{5\pi}{3}.$$

50. $3\tan^{2} x - 9 = 0$ $\tan^{2} x = \frac{9}{3}$ $\tan^{2} x = 3$ $\tan x = \pm\sqrt{3}$ $\tan x = \sqrt{3}$ or $\tan x = -\sqrt{3}$ $x = \frac{\pi}{3}, \frac{4\pi}{3}$ $x = \frac{2\pi}{3}, \frac{5\pi}{3}$ The solutions in the interval $[0, 2\pi)$ are $\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \text{ and } \frac{5\pi}{3}.$

52. $4 \sec^2 x - 2 = 0$

56. $(2\cos x - \sqrt{3})(2\sin x - 1) = 0$

52.
$$4\sec^2 x - 2 = 0$$

 $\sec^2 x = \frac{2}{4}$
 $\cos^2 x = 2$
 $\cos x = \pm \sqrt{2}$
No solution.

54.
$$(\tan x + 1)(\sin x - 1) = 0$$

 $\tan x + 1 = 0$ or $\sin x - 1 = 0$
 $\tan x = -1$ $\sin x = 1$
 $x = \frac{3\pi}{4}$ $x = \frac{7\pi}{4}$ $x = \frac{\pi}{2}$
The solutions in the interval $[0, 2\pi)$
 $\operatorname{are} \frac{3\pi}{4}$ and $\frac{7\pi}{4}$ since $\tan is$ undefined at $\frac{\pi}{2}$.

56.
$$(2\cos x - \sqrt{3})(2\sin x - 1) = 0$$

 $2\cos x - \sqrt{3} = 0$ or $2\sin x - 1 = 0$
 $2\cos x = \sqrt{3}$ $2\sin x = 1$
 $\cos x = \frac{\sqrt{3}}{2}$ $\sin x = \frac{1}{2}$
 $x = \frac{\pi}{6}$ $x = \frac{11\pi}{6}$ $x = \frac{\pi}{6}$ $x = \frac{5\pi}{6}$
The solutions in the interval $[0, 2\pi)$ are
 $\frac{\pi}{6}, \frac{5\pi}{6}$, and $\frac{11\pi}{6}$.

58.
$$\cot x(\tan x + 1) = 0$$

 $\cot x = 0$ or $\tan x + 1 = 0$
 $\tan x = -1$
 $x = \frac{\pi}{2}$ $x = \frac{3\pi}{2}$ $x = \frac{3\pi}{4}$ $x = \frac{7\pi}{4}$
The solutions in the interval $[0, 2\pi)$
are
 $\frac{3\pi}{4}$ and $\frac{7\pi}{4}$ since tan is undefined at $\frac{\pi}{2}$ and $\frac{3\pi}{2}$

62.
$$\cot^{2} x \sin x = \cot^{2} x$$
$$\cot^{2} x \sin x - \cot^{2} x = 0$$
$$\cot 2(\sin x - 1) = 0$$
$$\cot^{2} x = 0 \quad \text{or} \quad \sin x - 1 = 0$$
$$\cot x = 0 \qquad \sin x = 1$$
$$x = \frac{\pi}{2} \qquad x = \frac{3\pi}{2} \qquad x = \frac{\pi}{2}$$
The solutions in the interval $[0, 2\pi)$ are $\frac{\pi}{2}$ and $\frac{3\pi}{2}$.

60.
$$\cos x - 2\sin x \cos x = 0$$

 $\cos x(1 - 2\sin x) = 0$
 $\cos x = 0$ or $1 - 2\sin x = 0$
 $-2\sin x = -1$
 $\sin x = \frac{1}{2}$
 $x = \frac{\pi}{2}$ $x = \frac{3\pi}{2}$ $x = \frac{\pi}{6}$ $x = \frac{5\pi}{6}$
The solutions in the interval $[0, 2\pi)$ are $\frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}$, and $\frac{3\pi}{2}$.