Assignments for Algebra 2 Unit 12: Logarithmic Functions

Day 1 - Evaluate Logarithms
Objectives: SWBAT Evaluate Logarithms

Logarithm- A logarithm answers the question "How many of a specific number to we need to multiply by itself to get another number?

$$
2^{?}=8
$$

DEFINITION OF LOGARITHM WITH BASE \boldsymbol{b}

Let b and y be positive numbers with $\mathrm{b} \neq 1$.
The logarithm of y with base b is denoted by $\log _{b} y$ is defined as follows:

$$
\log _{\mathrm{b}} \mathrm{y}=
$$

\qquad if and only if $b^{x}=$ \qquad
The expression $\log _{b}$ y is read as "log base b of $y . "$
Common logarithm - logarithm with base 10, and written as log

Natural logarithm- logarithm with base e, and written as \ln

Rewrite the logarithmic equations as exponential equations.

1. $\log _{2} 32=5$
2. $\log _{7} 1=0$
3. $\log _{13} 13=1$
4. $\log _{1 / 2} 2=-1$
5. $\log _{3} 243=5$
6. $\log _{2} 64=6$

Evaluate logarithms.

7. $\log _{3} 81=$
8. $\log _{4} 0.25=$
9. $\log _{1 / 4} 256=$
10. $\log _{49} 7=$
11. $\log _{1 / 3} 9=$
12. $\log _{16} 4=$

Inverse Rule / Common Base Rule of Logarithms- $\log _{b} b^{x}=x$ and $b^{\log _{b}(x)}=x$
Use inverse properties of logarithms to simplify the following expressions.
13. $10^{\log 6.7}$
14. $\log _{2} 16^{x}$
15. $e^{\ln 7 x}$
16. $\log _{3} 27^{x}$

Use a calculator to evaluate the following logarithms.
17. $\log 26$
18. $\ln 0.45$

Day 2 - Graph Logarithmic Functions
 Objectives: SWBAT Graph Logarithmic Functions:

Find the inverse of the following functions.

1. $\mathrm{y}=\log _{3 / 2} \mathrm{x}$
2. $y=e^{(x-4)}$
3. $\mathrm{y}=\log _{7} \mathrm{x}$
4. $y=\ln (x+6)$

PARENT FUNCTION FOR LOGARITHMIC FUNCTIONS

$$
\mathrm{y}=\log _{\mathrm{b}} \mathrm{x} \quad \text { For this graph we will use } \mathrm{b}=3 .
$$

- Notice that the graph is similar to an \qquad
- What would happen if the b was greater than zero but smaller than 1 ?
- The y-axis is an \qquad of the graph.
- The domain of the parent function is \qquad .
- The range of the parent function is \qquad .
- Identify the parent function and write in exponential form.
- Find your two crucial points, by using $y=0$, and $y=1$.
- Translate the crucial points if needed.
- Sketch the logarithmic function.

Graph the following logs.

1. $\mathrm{y}=\log _{2} \mathrm{x}$

(, -1) (, \qquad 0) \qquad 1)
(\qquad ,-1) (, \qquad 0) (\qquad 1)
2. $\mathrm{y}=\log _{3}(\mathrm{x}-1)+2$
3. $\mathrm{f}(\mathrm{x})=\log _{1 / 2} \mathrm{x}-3$

(\qquad , -1) (, \qquad 0) (\qquad 1)
4. $\mathrm{f}(\mathrm{x})=\log _{1 / 3} \mathrm{x}$

$(\ldots,-1)($, \qquad 0) (
Use a calculator to graph the following natural logs.
5. $y=\ln (x)+2$

Domain:

Range:

Asym:

\qquad , - 1) (, \qquad 0)

Objectives: SWBAT use and apply the properties of logs
Use exponential form to evaluate the following logarithms.

1. $\log _{5} 1$
2. $\ln 0$
3. $\log _{6}(-3)$
4. $\log _{3} 27$

PROPERTIES OF LOGARITHMS

Let b, m, and n be positive numbers such that $\mathrm{b} \neq 1$.

Expanding
$\log _{b}(M \cdot N)=\log _{b}(M)+\log _{b}(N)$
Condensing or Compressing

Power Property:

$$
\log _{b} m n=\log _{b} m \ldots \log _{b} n
$$

Product Property:
$\log _{b} \frac{m}{n}=\log _{b} m$ \qquad $\log _{b} n$

$$
\log _{\mathrm{b}} \mathrm{~m}^{\mathrm{n}}=
$$

Use properties of logarithms and the following values to evaluate the following logarithms.

$$
\log _{5} 4 \approx 0.861 \text { and } \log _{5} 9 \approx 1.365
$$

5. $\log _{5} \frac{4}{9}$
6. $\log _{5} 36$
7. $\log _{5} 81$

Use properties of logarithms to expand the following logarithmic expressions.
8. $\log 5 x^{7}$
9. $\log _{3} \frac{7 x^{2}}{y}$
10. $\log _{4} \frac{(16 x)^{2}}{3 \sqrt{y}}$
11. $\ln \frac{7 \mathrm{y}^{3}}{4 \mathrm{x}^{2}}$

Day 4 - More Applying Properties of Logarithms

Objectives: SWBAT use and apply the properties of logs

PROPERTIES OF LOGARITHMS

Let b, m, and n be positive numbers such that $\mathrm{b} \neq 1$.

Expanding

Product Property: $\quad \log _{\mathrm{b}} \mathrm{mn}=\log _{\mathrm{b}} \mathrm{m} \quad \log _{\mathrm{b}} \mathrm{n}$
$\log _{b}(M \cdot N)=\log _{b}(M)+\log _{b}(N)$
Condensing or Compressing

Power Property: $\log _{\mathrm{b}} \mathrm{m}^{\mathrm{n}}=$ \qquad

Use properties of logarithms to condense the following logarithmic expressions.

1. $\log 2+3 \log 3-\log 9$
2. $\ln 3+2 \ln x-\ln y$
3. $\log _{5} 3+\frac{1}{2} \log _{5} x-\log _{5} 7$
4. $\log 4-(3 \log x+\log y)$
5. $2 \ln x-\ln 3+\ln 6$
6. $3 \log _{4} x+\log _{4} 3-\log _{4} x-\log _{4} 6$

CHANGE OF BASE FORMULA:

If a, b, and c are positive numbers with $b \neq 1$ and $c \neq 1$, then $\log _{c} a=\frac{\log _{b} a}{\log _{b} c}$

In particular $\log _{\mathrm{c}} \mathrm{a}=$ \qquad and $\log _{\mathrm{c}} \mathrm{a}=$ \qquad .

Use the change of base formula to evaluate the following logarithms.
7. $\log _{6} 11$
8. $\log _{16} 26$
9. $\log _{5} 13$

Exponential equation- an equation where the variable is in the exponent. $d=b^{x}$
Solve the following equations by taking the logarithm of each side.

1. $6^{x}=27$
2. $8^{3 x+2}-6=5$
3. $6 \mathrm{e}^{0.25 \mathrm{x}}+8=20$
4. $5^{x}=72$
5. $3 \mathrm{e}^{0.5 \mathrm{x}}+2=5$

PROPERTY OF EQUALITY FOR EXPONENTIAL EQUATIONS:

If b is a positive number other than one then...

$$
b^{x}=b^{y} \text { if and only if }
$$

\qquad So if $5^{x}=5^{4}$, then $x=$ \qquad .

Solve the following equations by equating exponents.

6. $64^{x}=16^{x+1}$
7. $3^{7 x-3}=9^{2 x}$
8. An important application of exponential equations is Newton's Law of Cooling. This law states that for a cooling substance with initial temperature T_{0}, the temperature T after t minutes can be modeled by the equation $T=\left(T_{0}-T_{R}\right) e^{-r t}+T_{R}$, where T_{R} is the surrounding temperature and r is the substances cooling rate. So if CSI Brodie finds a body that is currently $86^{\circ} \mathrm{F}$ in a hotel room that is $73^{\circ} \mathrm{F}$ and the cooling rate of a human corpse is 0.0033 , how long ago did this John Doe die?

Day 6 - Solve Logarithmic Equations

Logarithmic equation: an equation where the variable is inside the logarithm $d=\log _{b}(x)$

PROPERTY OF EQUAILITY FOR LOGARITHMIC EQUATIONS

If b, x, and y are positive numbers with $\mathrm{b} \neq 1$ then...
$\log _{\mathrm{b}}(\mathrm{x})=\log _{\mathrm{b}}(\mathrm{y})$ if and only if \qquad So if, $\log _{3} x=\log _{3} 8$ then $x=$ \qquad .

Solve a logarithmic equation.

1. $\log _{7}(6 x-16)=\log _{7}(x-1)$
2. $\ln (7 x-13)=\ln (2 x+17)$

Exponentiate each side of an equation to solve the following logarithmic equations.
3. $\log _{5}(3 x-8)=2$
4. $\log _{4}(10 x+624)=5$
5. $\log 5 x+\log (x-1)=2$
6. $\log _{3}(2 x+9)=3$
7. $\log _{6}(x-9)+\log _{6} x=2$

