Assignments for Algebra 2 Unit 12: Logarithmic Functions

Day 1 – Evaluate Logarithms

Objectives: SWBAT Evaluate Logarithms

<u>Inverse Rule / Common Base Rule of Logarithms</u>– $log_b b^x = x$ and $b^{log_b(x)} = x$

Use inverse properties of logarithms to simplify the following expressions.

13. $10^{\log 6.7}$ **14.** $\log_2 16^x$ **15.** $e^{\ln 7x}$ **16.** $\log_3 27^x$

Use a calculator to evaluate the following logarithms.

17. log 26

18. ln 0.45

Day 2 – Graph Logarithmic Functions

Objectives: SWBAT Graph Logarithmic Functions:

Find the inverse of the following functions.

1. $y = \log_{3/2} x$ 2. $y = e^{(x-4)}$ 3. $y = \log_7 x$	4. $y = ln(x+6)$
---	-------------------------

PARENT FUNCTION FOR LOGARITHMIC FUNCTIONS

 $y = \log_{b} x$

For this graph we will use b = 3.

- - What would happen if the b was greater than zero but smaller than 1?
 - The y-axis is an ______ of the graph.
 - The domain of the parent function is _____.
 - The range of the parent function is _____.

Steps to graphing a logarithmic function.

- Identify the parent function and write in exponential form.
- Find your two crucial points, by using y = 0, and y = 1.
- Translate the crucial points if needed.
- Sketch the logarithmic function.

Graph the following logs.

<u>Use a calculator to graph the following natural logs.</u>

5. $y = \ln(x) + 2$

Domain:

Range:

Asym:

				1	•			
								ſ
								İ
								t
		_		-				ł
		_		-	_			ł
		_		-	_			ł
←				_	_			ļ
•								l
								İ
								İ
	-	-		-	-			ł
	_	_		-	-			ł
				_				ļ
					,			ľ

4. $f(x) = \log_{1/2} x - 3$

Day 3 – Apply Properties of Logarithms

Objectives: SWBAT use and apply the properties of logs

Use exponential form to evaluate the following logarithms.

	1.	$\log_5 1$	2. $\ln 0$	3. $\log_6(-3)$	4. $\log_3 27$
--	----	------------	-------------------	------------------------	-----------------------

PROPERTIES OF LOGARITHMS

8. $\log 5x^7$

 $\log_5 4 \approx 0.861$ and $\log_5 9 \approx 1.365$

5.
$$\log_5 \frac{4}{9}$$
 6. $\log_5 36$ **7.** $\log_5 81$

Use properties of logarithms to expand the following logarithmic expressions.

9.
$$\log_3 \frac{7x^2}{y}$$

10.
$$\log_4 \frac{(16x)^2}{3\sqrt{y}}$$
 11. $\ln \frac{7y^3}{4x^2}$

Day 4 – More Applying Properties of Logarithms

Objectives: SWBAT use and apply the properties of logs **PROPERTIES OF LOGARITHMS** Let *b*, *m*, and *n* be positive numbers such that $b \neq 1$. Expanding $\log_{b}(\mathbf{M}\cdot\mathbf{N}) = \log_{b}(\mathbf{M}) + \log_{b}(\mathbf{N})$ **Product Property:** $\log_{h} mn = \log_{h} m$ $\log_{h} n$ $\log_b \frac{m}{n} = \log_b m _ \log_b n$ **Quotient Property:** Condensing or Compressing $\log_{h} m^{n} =$ **Power Property:** Use properties of logarithms to condense the following logarithmic expressions. 1. $\log 2 + 3\log 3 - \log 9$ 2. $\ln 3 + 2 \ln x - \ln y$ 3. $\log_5 3 + \frac{1}{2}\log_5 x - \log_5 7$ 4. $\log 4 - (3\log x + \log y)$ **6.** $3\log_4 x + \log_4 3 - \log_4 x - \log_4 6$ 5. $2\ln x - \ln 3 + \ln 6$

CHANGE OF BASE FORMULA:

If a, b, and c are positive numbers with $b \neq 1$ and $c \neq 1$, then $\log_{c} a = \frac{\log_{b} a}{\log_{b} c}$

In particular $\log_c a =$ _____ and $\log_c a =$ _____.

Use the change of base formula to evaluate the following logarithms.

7. $\log_6 11$ 8. $\log_{16} 26$ 9. $\log_5 13$

Day 5 – Solve Exponential Equations

<u>Objectives:</u> SWBAT solve equations with where the variable is in the exponent.

Exponential equation – an equation where the variable is in the exponent. $d = b^x$

Solve the following equations by taking the logarithm of each side.

1. $6^x = 27$ **2.** $8^{3x+2} - 6 = 5$ **3.** $6e^{0.25x} + 8 = 20$

4.
$$5^x = 72$$
 5. $3e^{0.5x} + 2 = 5$

PROPERTY OF EQUALITY FOR EXPONENTIAL EQUATIONS:

If b is a positive number other than one then...

 $\mathbf{b}^{x} = \mathbf{b}^{y}$ if and only if _____. So if $5^{x} = 5^{4}$, then x =_____.

Solve the following equations by equating exponents.

6. $64^x = 16^{x+1}$

7. $3^{7x-3} = 9^{2x}$

8. An important application of exponential equations is Newton's Law of Cooling. This law states that for a cooling substance with initial temperature T_0 , the temperature T after t minutes can be modeled by the equation $T = (T_0 - T_R)e^{-rt} + T_R$, where T_R is the surrounding temperature and r is the substances cooling rate. So if CSI Brodie finds a body that is currently 86°F in a hotel room that is 73°F and the cooling rate of a human corpse is 0.0033, how long ago did this John Doe die?

Day 6 – Solve Logarithmic Equations

Logarithmic equation: an equation where the variable is inside the logarithm $d = log_b(x)$

PROPERTY OF EQUAILITY FOR LOGARITHMIC EQUATIONS

If *b*, *x*, and *y* are positive numbers with $b \neq 1$ then...

 $\log_b(x) = \log_b(y)$ if and only if _____ So if, $\log_3 x = \log_3 8$ then $x = ____$.

Solve a logarithmic equation.

1. $\log_7(6x-16) = \log_7(x-1)$ **2.** $\ln(7x-13) = \ln(2x+17)$

Exponentiate each side of an equation to solve the following logarithmic equations.

3. $\log_5(3x-8) = 2$

4. $\log_4(10x + 624) = 5$

5. $\log 5x + \log(x - 1) = 2$

6. $\log_3(2x+9) = 3$ 7. $\log_6(x-9) + \log_6 x = 2$