

Day 1 – Evaluating Polynomial Functions

Objectives: SWBAT identify polynomial functions SWBAT evaluate polynomial functions. SWBAT find the end behaviors of polynomial functions.

Polynomial

Polynomial Function Notation

Leading Coefficient

Degree

Defining Polynomials

Polynomial	# of terms	Name by # of terms	Degree	Name by degree	Leading Coefficient
12					
8 <i>x</i>					
$4x^2 + 3$					
$5x^3 + x^2$					
$3x^2 - 4x + 6$					
$3x^4 - 4x^3 + 6x^2 - 7$					
$3x^5 + 3\sqrt{x}$					
$11x^2 - 5x^{-1}$					

Decide whether the function is a polynomial function. If so write it in standard form, then state its degree, type, and leading coefficient.

1. $f(x) = 3x^3 + 4x^{2.5} - 6x^2$

Is it a polynomial	Standard Form	Number of terms	Degree	Leading Coefficient

2. $f(x) = x^2 + 3.7x + 9x^4$

Is it a polynomial	Standard Form	Number of terms	Degree	Leading Coefficient

a. $f(x) = -2x^3 + 2x^2 - 3x^4 + 5$

Is it a polynomial	Standard Form	Number of terms	Degree	Leading Coefficient

$4. \quad f(x) = -2x^3 + 2x^2 - 3x^4 + 5\sqrt{x}$

Is it a polynomial	Standard Form	Number of terms	Degree	Leading Coefficient

Direct Substitution

Use direct substitution to evaluate the functions below for the given value.

4. $f(x) = 3x^4 - x^3 + 2x^2 + 4; x = 2$ **b.** $f(x) = -x^3 + 2x^2 + 2x - 1; f(-2)$

Polynomial Synthetic Substitution

Use synthetic substitution to evaluate the functions below for the given value.

6.
$$f(x) = 2x^4 - 5x^3 - 4x + 8; \ x = 3$$

7. $g(x) = x^4 + 3x^3 - 4x^2 - x; \ x = -2$
 $g(x) = x^2 + 5x^4 + 6x - 1; \ g(4)$
9. $f(x) = 64x^4 - 8x^2 - 4x; \ f\left(\frac{1}{2}\right)$

Day 2 – Graph Polynomial Functions

Objectives: SWBAT graph polynomial functions SWBAT state the end behavior of polynomial functions

Degree

c.

Leading Coefficient

End Behavior

Nomo	Concrel Shane	Leading Coefficient				
Name	General Snape	Positive	Negative			
Quadratic						
Cubic						
Quartic						

End behavior of Polynomial function

Draw a mental picture, then write the End Behavior for the functions below without graphing them:

1. $y = -6x^{20} + 55x^{11} - 18$ **2.** $f(x) = x^7 + 13x^6 + 5x - 2$ **a.** $f(x) = -2x^3 + x^2 - 11x + 7$

Zeros

Positive Interval

Negative Interval

Find the positive and negative intervals:

Positive (above x-axis)

Negative (below x-axis)

MathBits.com

Zeros 7 1 1 2 3

Graph the following polynomial functions by creating a table, then describe their end behavior.

-	1. $f($	x) = -	$-x^{3}-$	$2x^{2} +$	<i>x</i> +2				
	x	-3	-2	-1	0	1	2	3	
	f(x)								

2. $f(x) = x^4 + 4x^3 + x^2 - 6x$

x	-3	-2	-1	0	1	2	3
f(x)							

<u>Day 3 – Important Parts on the Graph of a Polynomial</u> <u>Function</u>

Objectives: SWBAT identify relative minimum and maximum SWBAT state when a graph is increasing and decreasing

Using the graph below, find all of the following.

Local Min	
Local Max	
Increasing	
Decreasing	
Positive	
Negative	
End	$f(x) \rightarrow \underline{\qquad}$ as $x \rightarrow -\infty$ and
Behavior	$f(x) \rightarrow \underline{\qquad} as \ x \rightarrow \infty$

<u>Sketch a graph of the following polynomial functions by using their local minima or maxima, describe</u> the end behavior and the intervals in which the function is increasing or decreasing.

x	-3	-2	-1	0	1	2	3
f(x)							

Day 4 – Add, Subtract, and Multiply Polynomials Objectives: SWBAT Add, Subtract, and Multiply Polynomials

Objectives: SwBAT Add, Subtract, and Multiply Polynolinals

1. $(3x^3 - 2x^2 + 4x - 6) + (x^3 - 5x^2 + 3)$

2. $(2y^3 + 7y^2 - 6y) + (-4y^2 + 3y - 9)$

Subtracting polynomials vertically and horizontally.

- **3.** $(7x^3-6x^2-4x+7)-(6x^3+3x^2-7x+5)$ **4.** $(8y^2-5y+11)-(12y^2-9y-3)$

Multiplying polynomials horizontally and the "Box" method

5. Rainbow: $(3x^2 - x + 4)(x + 2)$

6. Box: $(x-3)(x^2+2x-5)$

Day 5 – Multiply Polynomials using Special Product Patterns

SPECIAL PRODUCT PATTERNS ****Shortcuts if you can remember them****

Sum and Difference:

 $(a+b)(a-b) = a^2 - b^2$ Example: $(x+2)(x-2) = _$

 Square of a Binomial:
 $(a+b)^2 = a^2 + 2ab + b^2$
 $(a-b)^2 = a^2 - 2ab + b^2$ Example: $(3p^2 - 2)^2 = _$

 Cube of a Binomial:
 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$ Example: $(r-3)^3 = _$

<u>Perform the following Polynomial Multiplication.</u> If a rule can be use, stay which one, label your "a" and "b," and then use it.

11. $(6q-3r)^2$ **12.** $(2m+5)^3$ **c.** (x+3)(x-6)(x+5)

Day 6 – Factoring and Solving Polynomial Equations

Objectives: SWBAT Factor polynomials

Prime polynomial

Factored completely

Sum of two cubes:

$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$	Example: $x^3 + 8 =$
Difference of two cubes:	
$a^3-b^3=(a-b)(a^2+ab+b^2)$	Example: $8x^{3} - 1 =$

Factor the sum or difference of cubes.

1. $z^3 - 125$

2. $81y^4 + 192y$

a. $8x^3 + 64$

Factor by grouping. 4. $x^3 - 2x^2 - 9x + 18$

b. $x^3 + 2x^2 - 25x - 50$

Factor polynomials in quadratic form. 6. $3y^7 - 15y^5 + 18y^3$

7. $x^4 - 14x^2 + 45$

Solve a polynomial equation. 8. $x^4 + 9 = 10x^2$

c. $2x^5 + 24x = 14x^3$