Day 1 - Evaluating Polynomial Functions

Objectives: SWBAT identify polynomial functions SWBAT evaluate polynomial functions. SWBAT find the end behaviors of polynomial functions.

Polynomial

Polynomial Function Notation

All powers of \boldsymbol{x} are \qquad numbers.

Leading Coefficient

Degree

Defining Polynomials

Polynomial	\# of terms	Name by \# of terms	Degree	Name by degree	Leading Coefficient
12					
$8 x$					
$4 x^{2}+3$					
$5 x^{3}+x^{2}$					
$3 x^{2}-4 x+6$					
$3 x^{4}-4 x^{3}+6 x^{2}-7$					
$3 x^{5}+3 \sqrt{x}$					
$11 x^{2}-5 x^{-1}$					

Decide whether the function is a polynomial function. If so write it in standard form, then state its degree, type, and leading coefficient.

1. $f(x)=3 x^{3}+4 x^{2.5}-6 x^{2}$

Is it a polynomial	Standard Form	Number of terms	Degree	Leading Coefficient

2. $f(x)=x^{2}+3.7 x+9 x^{4}$

Is it a polynomial	Standard Form	Number of terms	Degree	Leading Coefficient

a. $f(x)=-2 x^{3}+2 x^{2}-3 x^{4}+5$

Is it a polynomial	Standard Form	Number of terms	Degree	Leading Coefficient

4. $f(x)=-2 x^{3}+2 x^{2}-3 x^{4}+5 \sqrt{x}$

Is it a polynomial	Standard Form	Number of terms	Degree	Leading Coefficient

Direct Substitution

Use direct substitution to evaluate the functions below for the given value.
4. $f(x)=3 x^{4}-x^{3}+2 x^{2}+4 ; x=2$
b. $f(x)=-x^{3}+2 x^{2}+2 x-1 ; f(-2)$

Polynomial Synthetic Substitution

Use synthetic substitution to evaluate the functions below for the given value.
6. $f(x)=2 x^{4}-5 x^{3}-4 x+8 ; x=3$ $+$
c. $g(x)=x^{2}+5 x^{4}+6 x-1 ; g(4)$
9. $f(x)=64 x^{4}-8 x^{2}-4 x ; f\left(\frac{1}{2}\right)$

Day 2 - Graph Polynomial Functions

Objectives: SWBAT graph polynomial functions SWBAT state the end behavior of polynomial functions

Degree
Leading Coefficient
End Behavior

Name	General Shape	Leading Coefficient	
		Negative	
Quadratic			
Cubic			
Quartic			

End behavior of Polynomial function

	END BEHAVIOR	
	Positive Leading Coefficients	Negative Leading Coefficients
EVEN DEGREE	$x \rightarrow-\infty$ $x \rightarrow \infty$ What is happening to the graph? $f(x) \rightarrow$ \qquad $f(x) \rightarrow$ \qquad	 What is happening to the graph? $f(x) \rightarrow \ldots \quad f(x) \rightarrow$
ODD DEGREE	 Left Arrow Right Arrow $x \rightarrow-\infty$ $x \rightarrow \infty$ What is happening to the graph? $f(x) \rightarrow$ \qquad $f(x) \rightarrow$ \qquad	 What is happening to the graph? $f(x) \rightarrow$ \qquad $f(x) \rightarrow$ \qquad

Draw a mental picture, then write the End Behavior for the functions below without graphing them:

1. $y=-6 x^{20}+55 x^{11}-18$
2. $f(x)=x^{7}+13 x^{6}+5 x-2$
a. $f(x)=-2 x^{3}+x^{2}-11 x+7$

Positive Interval

Negative Interval

Find the positive and negative intervals:
3.

Zeros: \qquad

Positive: \qquad
Negative: \qquad
4.

Zeros: \qquad
Positive: \qquad
Negative: \qquad

b)

Zeros:

Positive: \qquad

Negative: \qquad

Graph the following polynomial functions by creating a table, then describe their end behavior.

1. $f(x)=-x^{3}-2 x^{2}+x+2$
2. $f(x)=x^{4}+4 x^{3}+x^{2}-6 x$

x	$-\mathbf{3}$	$-\mathbf{2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$f(x)$							

\boldsymbol{x}	$\mathbf{- 3}$	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\boldsymbol{f}(\boldsymbol{x})$							

On what interval is $\mathrm{f}(\mathrm{x})$ positive?
$\mathrm{f}(\mathrm{x}) \rightarrow$ \qquad as $\mathrm{x} \rightarrow-\infty$ and $\mathrm{f}(\mathrm{x}) \rightarrow \ldots$ as $\mathrm{x} \rightarrow \infty \quad \mathrm{f}(\mathrm{x}) \rightarrow$ \qquad as $\mathrm{x} \rightarrow-\infty$ and $\mathrm{f}(\mathrm{x}) \rightarrow$ \qquad as $\mathrm{x} \rightarrow \infty$

Day 3 - Important Parts on the Graph of a Polynomial Function

Objectives: SWBAT identify relative minimum and maximum SWBAT state when a graph is increasing and decreasing

Local Minimum/ Minima

Local Maximum / Maxima

Increasing Intervals

Decreasing Intervals

Find the local maxima, and minima. Then find when the graph is increasing and decreasing.
a.

Maxima: \qquad
1.

Minima: \qquad

Increasing: \qquad

Decreasing: \qquad
2.

Maxima: \qquad

Minima: \qquad

Increasing: \qquad

Decreasing: \qquad

Minima: \qquad

Increasing: \qquad

Decreasing: \qquad

End Behavior: \qquad End Behavior: \qquad

Using the graph below, find all of the following.

3.

Local Min	
Local Max	
Increasing	
Decreasing	
Positive	
Negative	
End	$\mathrm{f}(\mathrm{x}) \rightarrow$ ___ as $\mathrm{x} \rightarrow-\infty$ and $\mathrm{f}(\mathrm{x}) \rightarrow$ as $\mathrm{x} \rightarrow \infty$

Sketch a graph of the following polynomial functions by using their local minima or maxima, describe the end behavior and the intervals in which the function is increasing or decreasing.
5. $f(x)=-x^{4}+5 x-4$

Local Min	
Local Max	
Increasing	
Decreasing	
Positive	
Negative	
End	$\mathrm{f}(\mathrm{x}) \rightarrow$ ___ as $\mathrm{x} \rightarrow-\infty$ and Behavior $(x) \rightarrow$ as $\mathrm{x} \rightarrow \infty$

x	-3	-2	-1	0	1	2	3
$f(x)$							

Day 4 - Add, Subtract, and Multiply Polynomials

Objectives: SWBAT Add, Subtract, and Multiply Polynomials

$$
x+x=
$$

\qquad VS
$\boldsymbol{x} \cdot \boldsymbol{x}=$ \qquad

Adding polynomials vertically and horizontally.

1. $\left(3 \mathrm{x}^{3}-2 \mathrm{x}^{2}+4 \mathrm{x}-6\right)+\left(\mathrm{x}^{3}-5 \mathrm{x}^{2}+3\right)$
2. $\left(2 y^{3}+7 y^{2}-6 y\right)+\left(-4 y^{2}+3 y-9\right)$

Subtracting polynomials vertically and horizontally.

3. $\left(7 x^{3}-6 x^{2}-4 x+7\right)-\left(6 x^{3}+3 x^{2}-7 x+5\right)$
4. $\left(8 y^{2}-5 y+11\right)-\left(12 y^{2}-9 y-3\right)$

Multiplying polynomials horizontally and the "Box" method
5. Rainbow: $\left(3 x^{2}-x+4\right)(x+2)$
6. Box: $(x-3)\left(x^{2}+2 x-5\right)$

Day 5 -Multiply Polynomials using Special Product Patterns

SPECIAL PRODUCT PATTERNS

****Shortcuts if you can remember them*****
Sum and Difference:
$(a+b)(a-b)=a^{2}-b^{2}$
Example: $(x+2)(x-2)=$ \qquad

Square of a Binomial:

$(a+b)^{2}=a^{2}+2 a b+b^{2}$
Example: $(y+4)^{2}=$ \qquad
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
Example: $\left(3 p^{2}-2\right)^{2}=$ \qquad
Cube of a Binomial:
$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
Example: $(x+1)^{3}=$ \qquad
$(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$
Example: $(r-3)^{3}=$ \qquad

Perform the following Polynomial Multiplication. If a rule can be use, stay which one, label your "a" and " b," and then use it.
11. $(6 q-3 r)^{2}$
12. $(2 m+5)^{3}$
c. $(x+3)(x-6)(x+5)$

Day 6 - Factoring and Solving Polynomial Equations

Objectives: SWBAT Factor polynomials
Factored completely

Factoring Flow Chart

Sum of two cubes:

$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
Example: $x^{3}+8=$ \qquad

Difference of two cubes:

$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
Example: $8 x^{3}-1=$ \qquad
Factor the sum or difference of cubes.

1. $z^{3}-125$
2. $81 y^{4}+192 y$
a. $8 \mathrm{x}^{3}+64$

Factor by grouping.
4. $x^{3}-2 x^{2}-9 x+18$
b. $x^{3}+2 x^{2}-25 x-50$

Factor polynomials in quadratic form.
6. $3 y^{7}-15 y^{5}+18 y^{3}$
7. $\mathrm{x}^{4}-14 \mathrm{x}^{2}+45$

Solve a polynomial equation.
8. $\mathrm{x}^{4}+9=10 \mathrm{x}^{2}$
c. $2 x^{5}+24 x=14 x^{3}$

