<u>Alg. 2 – Unit 10 Notes – Composition of Functions,</u> <u>Inverses, Square Root and Cube Root Functions</u>

Day 1 – Perform Function Operations

Objective: SWBAT perform function operations Example: f(x) = 3x, g(x) = x+5

Operation	Notation	Example
Addition	h(x) = f(x) + g(x)	
Subtraction	h(x) = f(x) - g(x)	
Multiplication	$h(x) = f(x) \bullet g(x)$	
Division	$h(x) = \frac{f(x)}{g(x)}$	

The domain of *h* consists of the *x*-values that are in the domains of both ______ and _____. Additionally, the domain of a quotient does not include *x*-values for which the denominator equals ______.

 $f(x) = 4x^2$, g(x) = x - 7, and $h(x) = x^2 - 5x - 14$, and $j(x) = 2x^{1/2}$

Find the following.

1.
$$g(x) + h(x)$$
 2. $f(x) - g(x)$ 3. $f(x) \bullet j(x)$ 4. $\frac{h(x)}{g(x)}$

5.
$$g(x) \bullet h(x)$$
 6. $h(x) + f(x)$ 7. $\frac{j(x)}{f(x)}$ 8. $j(x) - h(x)$

State the domains of the composite functions above.

Operation and Definition

1.	2.	3.	4.
5.	6.	7.	8.

Day 2 – Composition Functions

Objective: SWBAT input functions into other functions

Review: Use these functions to evaluate the following.

$$f(x) = 4x^2$$
 $j(x) = 2x^{1/2}$

1. *j*(16)

a. *f*(5)

J(**k**)

Composition Functions: A function made of other functions, where the output of one is the input to the other.

<u>Notation:</u> f(g(x)) $f \circ g$ g(f(1))

Given the following functions, evaluate the following composite functions.

$(x) = 4x^2$	g(x)=x-7	$h(x) = 5x^2 - 3x + 2$	$\boldsymbol{j}(\boldsymbol{x}) = \boldsymbol{x}^{1/2}$
1. <i>h</i> (<i>g</i> (9))	2. $f(h(1))$	3. $(g \circ j)(4)$	4. (<i>j</i> ∘ <i>f</i>)(−2)

5.
$$g(f(x))$$
 6. $f(g(x))$ **7.** $f(f(x))$ **8.** $f \circ j$

9.
$$h(j(x))$$
 10. $j \circ j$ **11.** $j(f(x))$ **12.** $g(g(x))$

State the domains of the composite functions above.

5.	6.	7. 8.	
			•

Day 3 – Inverse Functions

Objective: SWBAT find inverses of functions SWBAT verify an inverse of a function

Functions: An equation where each input has a single output.

Vertical Line Test: A relation, f(x), is a function if and only if no vertical line intersects the graph of f(x) more than _____.

Look at the graphs of the following functions and determine if they are functions.

Inverse relationship – A relationship that undoes another relationship. Examples, adding/subtracting, multiplying/dividing, powers/radicals. To find, switch the input (x) and the output (y) and solve for y.

Inverse functions – When the original relationship and the inverse are both functions. Inverse functions are symmetric to the line y = x.

Find the inverse of the following equations.

1.
$$y = 7x - 4$$
 2. $f(x) = \frac{2}{3}x + 6$

$$3. \quad y = -x + 4$$

Find the inverse of the following power functions.

6.
$$f(x) = \frac{1}{4}x^3 + 3$$
 7. $g(x) = x^4 - 9$ **8.** $h(x) = 4x^2, x \le 0$ **9.** $p(t) = 64t^6, t \ge 0$

3. $y = -5\sin(x)$

Horizontal Line Test: An inverse relation, $f^{-1}(x)$, is a function if and only if no horizontal line intersects the graph of f(x) more than _____.

Given the graph the following functions determine if they are functions or not. Inverses?

Day 4 – Graphing Radical Functions – Square Roots

Objective: SWBAT graph square roots

<u>Radical function</u> – an equation where the input variable (x) is inside a radical

PARENT FUNCTION FOR SQUARE ROOT FUNCTIONS

Domain:

x			
у			

Range:

C	h 4 h	falloring	madiaal (from at a ma		4abla	and the	atata th	a damain	and manage
(TLA	он тпе	TOHOWINS	гасисат	IUNCLIONS	using a	table.	and then	state in	е пошаш	and range.
		10110 11 1115							• • • • • • • • • • • • • • • • • • • •	

1.	y	v =	= •	√ ;	x -	-1	+	2				
							1					
												Domaine
												Domain.
	_	_		-		_		_		_	_	
								_		_		Ъ
	←										≁	Range:
				-				_				
								/				

x	work	y

<u>Transformations of Radical Functions</u> $f(x) = \pm a\sqrt{x-h} \pm k$

Starting Point (h, k)						
Growth Factor of Square Root Graph						
x	y	a				
Right	Up/	Down				

Graph the following radical functions using a table, and then state the domain and range.

Day 5 – Graphing Radical Functions – Cube Roots

Objective: SWBAT graph cube roots

PARENT FUNCTION FOR CUBE ROOT FUNCTIONS

Domain:

Dongo	

x			
<i>y</i>			

ange:

Transformations of Radical Functions $f(x) = \pm a \sqrt[3]{x-h} \pm k$

Graph the following radical functions using a table, and then state the domain and range.

2.
$$y = \sqrt[3]{x} - 4$$

Domain: _____

Range: _____

 $x \to -\infty, f(x) \to _$

 $x \to +\infty, f(x) \to _$

End Behavior:

4. $f(x) = \sqrt[3]{x-1}$

Starting I		
\leftrightarrow	\$	a

Domain: _____

Range: _____

End Behavior:

 $x \to -\infty, f(x) \to _$

 $x \to +\infty, f(x) \to$

End Behavior:

Domain:	Range:
End Behavior:	$x \to -\infty, f(x) \to \underline{\qquad}$ $x \to +\infty, f(x) \to \underline{\qquad}$
$5. f(x) = -\sqrt[3]{x}$	+2+5

3. $f(x) = (x+4)^{\frac{1}{3}} + 3$

Domain: _____

Range: _____

Day 6 – Interpreting Square and Cube Root Functions

Objective: SWBAT state the domain, range, and end behavior of each function without a graph.

Square Roots

State the domain, range, end behavior, and transformation of the following radical equations without graphing them. If the parent function is g(x) then write the given function in terms of g(x).

Domain:Domain:Range:Range:End Behavior:End Behavior:	
Range:Range:End Behavior:End Behavior:	
End Behavior: End Behavior:	
3. $y = -\frac{1}{2}(3x+8)^{1/2} - 1$ <u>Mental Picture</u> 4. $y = -\frac{25}{72}x^{1/3} - 121$ <u>Mental P</u>	<u>icture</u>
Domain: Domain:	
Range: Range:	

Day 7 – Solve Radical Equations Analytically – Part 1

Objective: SWBAT solve radical equations analytically

SOLVING RADICAL EQUATIONS

- **Step 1:** ______ the radical on one side of the equation, if necessary.
- Step 2: Raise each side of the equation to the same _______ to eliminate the radical.
- **Step 3:** ______ the remaining linear or quadratic equation.
- Step 4: Check your answer(s) and discard any ______ solutions.

Solve the following radical equations.

1. $\sqrt{x+6} = 3$ **2.** $\sqrt[3]{5x-1} + 6 = 10$ **3.** $2\sqrt[3]{8x} + 9 = 5$

4.
$$\sqrt{x^2 + 6x} = 4$$
 5. $\sqrt{-10x + 24} = x$ **6.** $(2x - 1)^{1/4} = -3$

7. $x - 5 = \sqrt{x + 7}$

8. $\sqrt{2x+7} = x+2$

Day 8 – Solve Radical Equations Analytically – Part 2

Objective: SWBAT solve radical equations analytically

Solve the following radical equations.

1. $(3x+4)^{\frac{2}{3}} = 16$ **2.** $x-2 = \sqrt{x+10}$

3.
$$-2x^{\frac{3}{2}} - 21 = -37$$
 4. $(2x+7)^{\frac{1}{2}} = x+2$

5.
$$\sqrt{x+6} + 2 = \sqrt{10-3x}$$

6. $\sqrt{x+5} = \sqrt{3x+4} - 1$

<u>Day 11 – Modeling Radical Equations and solving</u> <u>Radical Equations graphically</u>

Objective: SWBAT solve radical equations with a calculator

SOLVING RADICAL EQUATIONS BY GRAPHING

Step 1	Set both sides of the equation as their own Equation ***Think of $\sqrt[3]{x-1} + 5 = x + 4$ as a system of two equations*** $\begin{cases} y = \sqrt[3]{x-1} + 5 \\ y = x + 4 \end{cases}$
Step 2	<u>Graph</u> each function individually with a calculator or by table
Step 3	The solution is where the functions intersect .

Solve the following equations by graphing

3. Wind Velocity: In a hurricane, the mean sustained wind velocity (in meters per second) is given by

 $v(p) = 6.3\sqrt{1013 - p}$

where p is the air pressure (in millibars) at the center of the hurricane. Estimate the air pressure at the center of the hurricane when the mean sustained wind velocity is 54.5 meters per second.

Solve the previous problem algebraically.

Solve the above problem by using the table function of your calculator.

How to solve using the table –

4. Solve $\sqrt{25-x} = 8$ by using the table.

Solve the above problem by using the graphing function of your calculator.

How to solve using the graph –

5. Solve $2.3\sqrt{x-1} = 11.5$ by using the graph.

Solve the following problem by using the method of your choice.

6. A model rocket is launched 25 feet from you. When the rocket is at height *h*, the distance *d* between you and the rocket is given by $d = \sqrt{625 + h^2}$ where *h* and *d* are measured in feet. What is the rockets' height when the distance between you and the rocket is 100 ft?