Alg. 2 - Unit 10 Notes - Composition of Functions, Inverses, Square Root and Cube Root Functions

Day 1 - Perform Function Operations

Operation and Definition
Objective: SWBAT perform function operations
(2)

Operation	Notation	Example
Addition	$h(x)=f(x)+g(x)$	
Subtraction	$h(x)=f(x)-g(x)$	
Multiplication	$h(x)=f(x) \bullet g(x)$	
Division	$h(x)=\frac{f(x)}{g(x)}$	

The domain of h consists of the x-values that are in the domains of both \qquad and \qquad . Additionally, the domain of a quotient does not include x-values for which the denominator equals \qquad
\qquad -

$$
f(x)=4 x^{2}, g(x)=x-7, \text { and } h(x)=x^{2}-5 x-14, \text { and } j(x)=2 x^{1 / 2}
$$

Find the following.

1. $g(x)+h(x)$
2. $f(x)-g(x)$
3. $f(x) \bullet j(x)$
4. $\frac{h(x)}{g(x)}$
5. $g(x) \bullet h(x)$
6. $h(x)+f(x)$
7. $\frac{j(x)}{f(x)}$
8. $j(x)-h(x)$

State the domains of the composite functions above.

1.
2.
3.
4.
5.
6.
7.
8.

Day 2 - Composition Functions

Objective: SWBAT input functions into other functions

Review: Use these functions to evaluate the following.

$$
f(x)=4 x^{2} \quad j(x)=2 x^{1 / 2}
$$

1. $j(16)$
a. $f(5)$

Composition Functions: A function made of other functions, where the output of one is the input to the other.
Notation:

$$
f(g(x))
$$

$$
f \circ g
$$

$$
g(f(1))
$$

Given the following functions, evaluate the following composite functions.

$$
(x)=4 x^{2} \quad g(x)=x-7 \quad h(x)=5 x^{2}-3 x+2 \quad j(x)=x^{1 / 2}
$$

1. $h(g(9))$
2. $f(h(1))$
3. $(g \circ j)(4)$
4. $(j \circ f)(-2)$
5. $g(f(x))$
6. $f(g(x))$
7. $f(f(x))$
8. $f \circ j$
9. $h(j(x))$
10. $j \circ j$
11. $j(f(x))$
12. $g(g(x))$

State the domains of the composite functions above.
5.
6.
7.
8.

Day 3 - Inverse Functions

Objective: SWBAT find inverses of functions
SWBAT verify an inverse of a function
Functions: An equation where each input has a single output.
Vertical Line Test: A relation, $f(x)$, is a function if and only if no vertical line intersects the graph of $f(x)$ more than \qquad .

Look at the graphs of the following functions and determine if they are functions.

1. $y=3^{5 x}-2$
2. $y=-5 \sin (x)$

Inverse relationship - A relationship that undoes another relationship. Examples, adding/subtracting, multiplying/dividing, powers/radicals. To find, switch the input (x) and the output (y) and solve for y .

Inverse functions - When the original relationship and the inverse are both functions. Inverse functions are symmetric to the line $\mathrm{y}=\mathrm{x}$.

Find the inverse of the following equations.

1. $y=7 x-4$
2. $f(x)=\frac{2}{3} x+6$
3. $y=-x+4$
4. $y=\frac{5}{x}+4$

Find the inverse of the following power functions.
6. $\mathrm{f}(\mathrm{x})=\frac{1}{4} \mathrm{x}^{3}+3$
7. $g(x)=x^{4}-9$
8. $h(x)=4 x^{2}, x \leq 0$
9. $\mathrm{p}(\mathrm{t})=64 \mathrm{t}^{6}, \mathrm{t} \geq 0$

Horizontal Line Test: An inverse relation, $f^{-1}(x)$, is a function if and only if no horizontal line intersects the graph of $f(x)$ more than \qquad .

Given the graph the following functions determine if they are functions or not. Inverses?
10. $y=\sqrt[3]{x+4}-2$

Is it a Function: \qquad
Inverse a Function? \qquad
12. $y=\sin (x)+3$

Is it a Function: \qquad
Inverse a Function? \qquad

Is it a Function: \qquad
Inverse a Function? \qquad

Radical function - an equation where the input variable (x) is inside a radical

PARENT FUNCTION FOR SQUARE ROOT FUNCTIONS

Domain:
Range:

x					
y					

Graph the following radical functions using a table, and then state the domain and range.

1. $y=\sqrt{x-1}+2$

\boldsymbol{x}	work	\boldsymbol{y}

Transformations of Radical Functions $f(x)= \pm a \sqrt{x-h} \pm k$

Graph the following radical functions using a table, and then state the domain and range.
2. $y=\sqrt{x+1}$

3. $f(x)=(x-2)^{\frac{1}{2}}+1$

Starting Point (h, k)		
\leftrightarrow	\uparrow	\boldsymbol{a}

Domain: \qquad Range: \qquad
5. $f(x)=-\sqrt{x+4}+6$

Starting Point (h, k)		
\leftrightarrow	\downarrow	\boldsymbol{a}

Domain: \qquad

Range: \qquad
6. $y=2 \sqrt{x}$

Domain: \qquad Range: \qquad Domain: \qquad Range: \qquad
Day 5 - Graphing Radical Functions - Cube Roots Objective: SWBAT graph cube roots

PARENT FUNCTION FOR CUBE ROOT FUNCTIONS

$$
f(x)=\sqrt[3]{x}
$$

Range:

x					
y					

Transformations of Radical Functions $f(x)= \pm a \sqrt[3]{x-h} \pm k$

Starting Point $(\boldsymbol{h}, \boldsymbol{k})$		
\longleftrightarrow	\uparrow	\boldsymbol{a}

Graph the following radical functions using a table, and then state the domain and range.
2. $y=\sqrt[3]{x}-4$

Starting Point (h, k)		
\leftrightarrow	\uparrow	\boldsymbol{a}

Domain: \qquad Range: \qquad
$x \rightarrow-\infty, f(x) \rightarrow$
$x \rightarrow+\infty, f(x) \rightarrow$
4. $f(x)=\sqrt[3]{x-1}$

Starting Point (h, k)		
\leftrightarrow	\downarrow	\boldsymbol{a}

Domain: \qquad Range: \qquad Domain: \qquad Range: \qquad
End Behavior: ${ }^{x \rightarrow-\infty, f(x) \rightarrow}$ \qquad $x \rightarrow+\infty, f(x) \rightarrow$ \qquad
7. $f(x)=-2(x+1)^{\frac{1}{3}}$

Starting Point (h, k)		
\leftrightarrow	\uparrow	\boldsymbol{a}

Domain: \qquad Range:
End Behavior: $\quad \begin{aligned} & x \rightarrow-\infty, f(x) \rightarrow \\ & x \rightarrow+\infty, f(x)\end{aligned}$ \qquad
End Behavior: $x \rightarrow+\infty, f(x) \rightarrow$

Objective: SWBAT state the domain, range, and end behavior of each function without a graph.

Square Roots

$f(x)= \pm a \sqrt{x-h} \pm k$

Cube Roots

$$
f(x)= \pm a \sqrt[3]{x-h} \pm k
$$

State the domain, range, end behavior, and transformation of the following radical equations without graphing them. If the parent function is $g(x)$ then write the given function in terms of $g(x)$.

1. $f(x)=\sqrt{x-4}+5 \quad$ Mental Picture

Domain:

Range:
End Behavior:
2. $f(x)=\sqrt[3]{x+7}-3$

Mental Picture

Domain:

Range:
End Behavior:
4. $y=-\frac{25}{72} x^{1 / 3}-121 \quad$ Mental Picture

Domain:

Range:

End Behavior:

Day 7 - Solve Radical Equations Analytically - Part 1

Objective: SWBAT solve radical equations analytically

SOLVING RADICAL EQUATIONS

Step 1: \qquad the radical on one side of the equation, if necessary.
Step 2: Raise each side of the equation to the same \qquad to eliminate the radical.
Step 3: \qquad the remaining linear or quadratic equation.
Step 4: Check your answer(s) and discard any \qquad solutions.

Solve the following radical equations.

1. $\sqrt{x+6}=3$
2. $\sqrt[3]{5 x-1}+6=10$
3. $2 \sqrt[3]{8 x}+9=5$
4. $\sqrt{x^{2}+6 x}=4$
5. $\sqrt{-10 x+24}=x$
6. $(2 x-1)^{1 / 4}=-3$
7. $x-5=\sqrt{x+7}$
8. $\sqrt{2 x+7}=x+2$

Day 8 - Solve Radical Equations Analytically - Part 2

Objective: SWBAT solve radical equations analytically Solve the following radical equations.

1. $(3 x+4)^{\frac{2}{3}}=16$
2. $x-2=\sqrt{x+10}$
3. $-2 x^{\frac{3}{2}}-21=-37$
4. $(2 x+7)^{\frac{1}{2}}=x+2$
5. $\sqrt{x+6}+2=\sqrt{10-3 x}$
6. $\sqrt{x+5}=\sqrt{3 x+4}-1$

Day 11 - Modeling Radical Equations and solving Radical Equations graphically

Objective: SWBAT solve radical equations with a calculator

SOLVING RADICAL EQUATIONS BY GRAPHING

Step 1	Set both sides of the equation as their own Equation $* * * T h i n k ~ o f ~$ $\sqrt[3]{x-1}+5=x+4$ as a system of two equations*** $=\sqrt[3]{x-1}+5$
Step 2	Graph each function individually with a calculator or by table
$y=x+4$	

Solve the following equations by graphing

1. $x-5=\sqrt{x+7}$

2. $\sqrt{x-3}=5-\sqrt{x+2}$

3. Wind Velocity: In a hurricane, the mean sustained wind velocity (in meters per second) is given by

$$
v(p)=6.3 \sqrt{1013-p}
$$

where p is the air pressure (in millibars) at the center of the hurricane. Estimate the air pressure at the center of the hurricane when the mean sustained wind velocity is 54.5 meters per second.

Solve the previous problem algebraically.

Solve the above problem by using the table function of your calculator.

How to solve using the table -
4. Solve $\sqrt{25-x}=8$ by using the table.

Solve the above problem by using the graphing function of your calculator.
How to solve using the graph -
5. Solve $2.3 \sqrt{x-1}=11.5$ by using the graph.

Solve the following problem by using the method of your choice.
6. A model rocket is launched 25 feet from you. When the rocket is at height h, the distance d between you and the rocket is given by $d=\sqrt{625+h^{2}}$ where h and d are measured in feet. What is the rockets' height when the distance between you and the rocket is 100 ft ?

