Assignments for Algebra 2 Unit 1: Review of Algebra 1

Day	Date	Notes	Assignment		
Monday	8/9/21	Class Business	Syllabus		
Tuesday	8/10/21	Combining Like Terms and Distributive Property	1.1 Worksheet		
Wednesday	8/11/21	Solving Linear Equations and Inequalities Part I	1.2 Worksheet		
Thursday	8/12/21	Solving Linear Equations and Inequalities Part II	1.3 Worksheet		
Friday	8/13/21	Slope Intercept Form and Writing Equations of Lines	1.4 Worksheet		
Monday	8/16/21	Solving Systems by Graphing and Substitution	1.5 Worksheet		
Tuesday	8/17/21	Solving by Elimination	1.6 Worksheet		
Wednesday	8/18/21	Solving Absolute Value Equations and Graphing Absolute Value Functions	1.7 Worksheet		
Thursday	8/19/21	Domain and Range	1.8 Worksheet		
Friday	8/20/21	Notation	1.9 Worksheet		
Monday	8/23/21	Piecewise Functions – Restricted Domains	1.10 Worksheet		
Tuesday	8/24/21	Piecewise Functions – Part II	1.11 Worksheet		
Wednesday	8/25/21	Review	Unit 1 Review		
Thursday	8/26/21	Review	Unit 1 Review		
Friday	8/27/21	Unit 1 Celebration of Knowledge			

******Assignment dates are subject to change**

HW reminders:

- > If you cannot solve a problem, get help **before** the assignment is due.
- Help is available before school, during lunch, or after school.

<u>Algebra 2 – Unit 1 – Review of Algebra 1</u>

Day 1 - Combining like Terms and Distributive Property

Objectives: SWBAT evaluate and simplify expressions involving real numbers. SWBAT evaluate exponents SWBAT combine like terms SWBAT plug values into expressions SWBAT apply Distributive and Double Distributive Properties

Exponent Vocabulary

Base – the number that ge	ets multiplied w	hen using the exponer	nt	2 r	5
Coefficient – a numbe	er used to multip	ply to a variable		JA	
Exponent – the numbe	r of times you r	multiply the base by its	self		
<u>Simplify</u> the following expr	essions.				
1. 3 ⁴	2. (-2) ⁴		a. (-5) ³		3. -4 ²
4. $2x^3$		5. (4 <i>y</i>) ²		b. $(6x)^3$	

Adding and Subtracting Expressions Vocabulary

Terms – a single number, variable (or combination) separated by a + or - b

<u>Like Terms</u> – terms with the same exact variable make-up

<u>Constant</u> – a number (no variable)

<u>Simplified</u> – an expression where all like terms have been combined and in descending order

Simplify the following expressions.

6. $(7z^2+2z) + (6z^2+3z)$ **7.** (9v-8w) - (10w-5v)**c)** $(7y^3 - 11x^2) - (8x^2 + y^3)$

Multiplying Expressions AKA Distributive Property:

8.
$$-2x^2(3x^3+3x^2-2x+5)$$
 9. $3-2(4m-2)$

d)
$$5m(3m^2 - m + 8)$$

Multiplying Expressions with FOIL AKA Double Distributive Property:

BE CAREFUL WHEN YOU HAVE PARENTHESIS

11) $(y-6)^2$ **12.** $(m+2)^3$

Day 2 – Solving Linear Equations and Inequalities – Part I

Objectives: SWBAT solve linear equations and inequalities. SWBAT use a formula. SWBAT isolate any variable in a formula or literal equation.

Equation – Two expressions that are equal or have the same value

Inequality Equation – an equation where a range of values make it true

REMINDER: When		or	an inequality by a
	number,		the direction of the inequality.

<u>Solve</u> – a value (or values) that make an equation true.

Solving One Step Equations

Solve and check the following equations.

1. $3x = -12$	2. $y - 11 = 15$	a. $-42 = 7m$	3. $\frac{m}{-4} < 6$
----------------------	-------------------------	----------------------	-----------------------

Reciprocal – Flipping a fraction.

Solving equations using reciprocals

Solve the following equations.

4.
$$\frac{7}{8}r = 21$$
 5. $\frac{3}{2}b \ge 12$ **b.** $\frac{5y}{6} = -4$ **6.** $\frac{x}{8} = \frac{3}{4}$

6.
$$\frac{x}{-7} + 8 = 3$$
 7. $13 < -\frac{3}{5}w - 5$ **c.** $4x - 9 = -7$ **8.** $\frac{1}{2} - m = \frac{5}{6}$

Day 3 – Solving Linear Equations & Inequalities – Part II

Objectives: SWBAT solve linear equations and inequalities. SWBAT use a formula. SWBAT isolate any variable in a formula or literal equation.

Variables on the Same Side:

Solving equations by combining like-terms.

1. 7y - 3y + 12 = 32 **2.** -4 > x + 4 - 9x **a.** $4 + 5a - 7 \le 17$

3. n-6=2n-14 **4.** -14x > 3x+17 **b.** 6-2x = 3x-14

Special Cases – when an equation as no single answer, it is All Real Numbers or No Solution

4.
$$-2(3x+1)-4 = -6x-6$$
 c. $-2(x-6)+4 \le -17-2x$

Formulas and Rewriting Equations:

Example: The equation $C = \frac{5}{9}(F - 32)$ is used to change temperature from Fahrenheit to Celsius. Find the equivalent Celsius temperature for each of the following Fahrenheit temperatures.

5. 212° F **d.** 70° C

6.
$$A = \frac{1}{2}(b_1 + b_2)h$$
, for b_1
e. $a^2 + b^2 = c^2$, for a

Day 4 – Slope Intercept Form and Writing Equations of Lines

Objectives: SWBAT graph lines SWBAT write the equation of lines from their graphs SWBAT write the equation of lines from a point and a slope

Slope Intercept Form – a line written in the equation form y = m

Slope – the rate of change of a line
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 or $m = \frac{rise}{run}$

y – Intercept – where the graph crosses the y-axis

State the slope and the y-intercept for each of the following equations.

1. $y = x - 1$	2. $y = -\frac{x}{2}$	a. $y = \frac{1}{3}x + 1$	VERTICAL LINES
m:	m:	m:	
b:	b:	b:	X=EQUATION
			CRIZONTAL LINES
3. $y = 5$	b. $x = -3$		O SLOPE
m:	m:		Y = EQUATION
b:	b:		

Rewrite each equation into slope-intercept form.

5.
$$3x + 2y = 15$$
 6. $2x - y = 0$ **b.** $\frac{1}{2}x - 2y = 14$

Graph each equation.

7.
$$f(x) = \frac{2}{3}x - 1$$

8. $3x - 2y = 4$
c. $y = -\frac{1}{3}x - 6$

d. x = 5

Write the equation of each line graphed below.

10. Line *a*:

- **11.** Line *c*:
- **e**. Line *b*:

f. Line *d*:

Use point slope form to write an equation for each problem. Then change it to slope intercept form.

12. It passes through (4, 2) with a slope of -4

13. Contains an *x*-intercept of 2 and *y*-intercept of 3

g. Contains (4,1) and the slope is undefined

<u>Day 5 – Solving Systems of Equations by Graphing and</u> <u>Substitution</u>

Objectives: SWBAT solve systems of equations by graphing. SWBAT solve systems of equations by Substitution

System of Equations- two or more equations that share variable values.

Solution to a System of equations – Where the two equations intersect or a point.

Finding Solutions to Systems of Equations by Graphing

- **1.** Graph the first line
- 2. Graph the second line
- **3.** Find where the two lines intersect
- **4.** Your Answer is a point

Solve the following systems by graphing.

1. y = 3x + 4 and $y = \frac{1}{2}x - 1$

Intersection point

Check

Intersection point

Check

Solving Systems of Equations by Substitution:

- 1. Look at the system of equations. Decide which problem will be the easiest to isolate a variable. You have 4 ways to proceed. WORKER SMARTER NOT HARDER
- 2. Decide which variable you want to solve for, and isolate that variable.
- 3. Plug or "Substitute" the equation into the variable into the other equation, solve for the single variable.
- 4. Substitute the value of the first variable, and plug it back into the first equation. Solve for the second equation. This will produce the part of your answer.
- 5. Check it! Put both values into both equations to see if it checks out.
- 6. ***** If the two equations are the same, the answer is **Infinitely Many Solutions**
- 7. ***** If the two equations are parallel, then there is **No Solution**

Solve the following systems of equations using substitution.

2.
$$\begin{array}{c} x=6\\ y=2x-3 \end{array}$$
 b. $\begin{array}{c} 3x+6y=18\\ y=2 \end{array}$

3. x = y + 2 and 2x + y = 13

c. y = 3x - 4 and 5x + y = -4

2

4.
$$3x - 2y = 5$$

 $2x + 4y = -2$
d. $x + y = 2$
 $y - x = -20$

Day 6 – Solving Systems of Equations by Elimination

Objectives: SWBAT solve systems of equations by Elimination

Solving Systems of Equations by Elimination:

- 1. Put both equations into the Standard form. Usually this will be Ax + By = C form (x and y on the same side of the equation)
- 2. Multiple one or both equations have one set of opposite coefficients (same number but opposite signs).
- **3.** Add the two equations together. Make sure this cancel out one of our variables. Solve the remaining equation. You just found first part of your answer.
- 4. Substitute the value for the solved variable back into either equation. Then solve the remaining equation. This is the other part of your answer.
- 5. Write your answer as a x=_____, and y=_____ or as an ordered pair.
- 6. If both variables cancel out, and the remaining constants form a true statement then it is **Infinitely Many Solutions**, and if it is a false statement then it is **No Solution**.
- 7. Check your Work.

Solve the following systems of equations using elimination.

1. 3x + 2y = 17 and 5x - 2y = 7

a) 3x + y = 3 and -3x - 4y = 6

2. 5x + y = -10 and 2x - 3y = 13

3. 7x + 2y = -2 and 2x = 14 - 3y

5. 6y + 37 = 5x and 3x - 9 = 4y + 14

Day 7 – Solve Absolute Value Equations and Graphs

Objectives: SWBAT to solve absolute value equations SWBAT graph Absolute Value Functions

Absolute Value – the distance a number is from zero

Absolute Value Review: - Simplify the following

- **1.** |4-8| = **2.** |-6-12| = **a.** |-9+13| =
- **3.** -|-6| = **4.** -|12-3| = **b.** -|0-3| =

- 1. Isolate the absolute value expression.
- **2.** Make two equations.
 - a. Write one equation where it is exactly the same without the absolute value bars
 - b. Write one where the equation equals the opposite number
- 3. Solve Both Equations

Solve the following absolute value equations.

5.
$$|x| = 4$$
 6. $|5x + 20| = 45$ **c.** $|x+3| = -15$

K

Absolute Value Functions

$$y = \pm a |x - h| + k$$

Vertical Stretch /Shrink:

Reflection:

Translation:

Vertex of an Absolute Value Graph:

Graph the following using transformations.

Day 8 – Domain and Range

Objectives:

SWBAT state the domain and range from a set of points. SWBAT state the domain and range from a graph.

Domain – the set of input values for a function

Think left to right

Range – the set of output values for a function

Think bottom to top

Find the domain of the following sets of points.

1.
$$\{(3,-5),(5,-6),(-10,5),(2,0)\}$$

a.
$$\{(-5,7), (2,3), (3,3), (-5,-5)\}$$

Domain: _____

Domain: _____

Range: _____

Range: _____

Day 9 - Notation

Objective:

SWBAT write domain and ranges in set, interval, and inequality notation

	Words	Inequality Notation	Set Notation	Interval Notation	Gra	ph
Open Interval	A set of numbers greater than <i>a</i> and less than <i>b</i>				↓ a a	b b
Closed Interval	A set of numbers greater than or equal to <i>a</i> and less than or equal to <i>b</i>				↓ a a	b b
Infinite Interval (Positive)	A set of numbers where <i>x</i> is greater than <i>a</i>				 a a 	
Infinite Interval (Negative)	A set of numbers where <i>x</i> is less than or equal to <i>b</i>				 a a 	b b

<u>Given the following graph, write the domain and range in inequality, set, and interval notation.</u> Also, <u>describe using words.</u>

	Inequality	Set	Interval
D			
R			

	Inequality	Set	Interval
D			
R			

	Inequality	Set	Interval
D			
R			

a.

	Inequality	Set	Interval
D			
R			

Day 10 – Piecewise Functions – Restricted Domains

Objectives: SWBAT graph functions with restrictive domains SWBAT evaluate piecewise functions

Closed Dot – includes that endpoint

Open Dot – does not include that endpoint

Restricted Domains – functions during a specific interval or domain

Evaluating the	niocowico fi	inctions given	the following	domaine
Evaluating the	piecewise it	unctions given	the fund wing	uumams

$g(x) = \langle$	(2x-1,	if	$x \leq 1$
	3x+1,	if	<i>x</i> > 1

a. x = -3

1. x = -4 **2.** g(5)**3.** *g*(−1)

Evaluate the function
$$f(x)$$
 for the following values.
$$f(x) = \begin{cases} -\frac{3}{2}x - 1, & \text{if } x < -2 \\ x + 1, & \text{if } -2 \le x < 1 \\ 3x^2, & \text{if } x \ge 1 \end{cases}$$

4. x = 0 **5.** f(-8)**c.** *f*(-2)

d. *f*(10)

Graph the following functions:

8.
$$f(x) = \{2x - 1, \quad if \ x \le 1\}$$

d. $g(x) = \{4x - 3, \quad if \ x > 2\}$

10.
$$f(x) = \{-x+7, if -3 < x \le 2\}$$

11.
$$f(x) = \begin{cases} -\frac{1}{3} |x| + 5 & \text{if } 1 \le x \le 6 \end{cases}$$

12.
$$f(x) = \left\{ \frac{1}{2} | x - 5 |, \text{ if } x \ge -3 \right\}$$

Day 11 – Piecewise Functions – Day 2

Graph the following piecewise function.

4. Write a piecewise function for the graph below.

