Algebra 2
Unit 1, Day 1-Combining Like Terms

Name:
Period: \qquad Date: \qquad

Simplify the following expressions completely.

1. $(-3)^{2}$
2. $(-2)^{3}$
3. -5^{2}
4. $(8 x-5)+(4 x-6)$
5. $(6 t+1)(t-2)$
6. $(2 k+11)-(4-7 k)$
7. $\left(x^{2}-x+9\right)-\left(5 x^{2}+5 x-7\right)$
8. $(3 r-5)^{2}$
9. $2 a-3(a+5)$
10. $(x-3)^{3}$
11. $(2 a-5)\left(a^{2}-4 a+1\right)$
12. If the length of a rectangle can be represented as $2 x-3$ and the width is $4 x+5$, write an expression that represents the perimeter of the rectangle.
13. Write the expression that represents the area of the rectangle above.
14. Kurtis is building a walkway that surrounds a rectangular garden. The shaded area in the picture represents this walkway. Write an expression that represents the area of the walkway using the information provided.

\qquad
\qquad

Solve the following equations.

1. $x+5=7$
2. $6>w-7$
3. $-11=b-9$
4. $187<-17 r$
5. $\frac{m}{2}=14$
6. $\frac{3}{2} k \geq 18$
7. $\frac{8}{5} x=\frac{4}{15}$
8. $3 x+7 \leq 19$
9. $5 h+4>19$
10. $7 d-1<13$
11. $17=\frac{w}{5}+13$
12. $\frac{b}{2}-9=11$
13. What is the first step you can take to solve the equation $6+\frac{x}{3}=-2$?
a) Subtract 2 frome each side
b) Add 6 to each side
c) Divide each side by 3
d) Subtract 6 from each side
14. A skateboarding park charges $\$ 7$ per session to skate and $\$ 4$ per session to rent safety equipment. Jared rents safety equipment every time he skates. During one year, he spends $\$ 99$ for skating charges and equipment rentals. Which equation can be used to find x, the number of sessions Jared attended?
a) $99=7 x$
b) $99=7 x+4 x$
c) $99=7 x+4$
d) $99=4 x+7$
15. A dance academy charges $\$ 24$ per class and a one-time registration fee of $\$ 15$. A student paid a total of $\$ 687$ to the academy. Find the number of classes the student took.

Algebra 2
Unit 1, Day 3 - Solving Equations

Name:
Period: \qquad Date: \qquad
Solve the following equations.

1. $\frac{1}{2}-y \geq \frac{2}{3}$
2. $5=5-2 x$
3. $1.1=3 x-2.5$
4. $\frac{\mathrm{x}-2}{-3}=4$
5. $7 \mathrm{x}-13-\mathrm{x}=32$
6. $4 \mathrm{a}-13=7 \mathrm{a}+20$
7. $\frac{1}{2} x+4 \leq-\frac{2}{3} x+\frac{1}{2}$
8. $5(2-x) \geq 3-2 x+7-3 x$
9. $13+6 x=6 x+1$
10. $38=4(2 f-3)-3 f$
11. $5(3 y+2)-6>15 y+4$

Solve the following formulas for the variable indicated.
12. $y=m x+b$; solve for x 13. $z=\frac{x-m}{s}$; solve for x
14. The volume of a pyramid is given by the formula $V=\frac{1}{3} b^{2} h$, where V is the volume of the pyramid, b is the length of one side of the base, and h is the height of the pyramid. Rewrite the equation so that it would give you the height of the pyramid, for a known volume and base length.
15. You have two summer jobs. In the first job, you work 25 hours per week and earn $\$ 7.75$ per hour. In the second job, you earn $\$ 6.25$ per hour and can work as many hours as you want. you want to earn $\$ 250$ per week. How many hours must you work at the second job? (You must write the equation(a) and solve it(b))

Algebra 2 - Unit 1 - Day 4
Graph and Write the Equations of Lines

Name:
Period: \qquad Date: \qquad

Graph the following functions.

1. $\mathrm{y}=3 \mathrm{x}-7$

2. $3 x-4 y=12$

3. $f(x)=-\frac{x}{3}+8$
4. $2 x=16$

5. Write the equation for graph below.

6. The line with slope $=-3$ passing through $(5,1)$
7. The line that goes through $(6,1)$ and $(3,3)$.
8. A line with $m=-2$ passing through $(0,2)$
9. A with an x-intercept of -2 , and a y-intercept of 6

Algebra 2 - Unit 1 - Day 5
Solve Systems by Graphing and Substitution
Solve the following systems of equations by graphing.

1. $y=x-1$ and $x+y=3$

Name: \qquad
Period: \qquad Date: \qquad e:

2. $y=2 x$ and $2 x+5 y=-12$

Solve the following systems of equations by substitution.
3. $y=4 x$ and $x+y=5$
4. $3 x-y=4$ and $2 x-3 y=-9$
5. $x+3 y=8$ and $2 x-4 y=-9$
6. $x+14 y=84$ and $-x-14 y=-7$
7. $4 x-2 y=-60$ and $5 x-3 y=-78$
8. $y+2 x=2$ and $y+x=1$

Algebra 2 - Unit 1 - Day 6 Solve Systems by Elimination

Name:
Period: \qquad Date: \qquad
Solve the following systems of equations by elimination.

1. $-x+2 y=12$ and $x+6 y=20$
2. $2 x+5 y=14$ and $4 x+5 y=8$
3. $2 x+5 y=3$ and $-x+3 y=-7$
4. $2 x-y=6$ and $-2 x+y=15$
5. $y=9 x-35$ and $5 x+8 y=28$
6. $-5 x+8 y=29$ and $7 x+3 y=2$
7. $9 x+8 y=7$ and $18 x-15 y=14$

Algebra 2

Unit 1 Day 7 Worksheet - Absolute Values

Name:
Period: \qquad Date: \qquad

Solve the following problems and check for extraneous solutions

1. $|3 x-2|=23$
2. $|x-3|=10$
3. $-|3 x-4|-12=10$
4. $3|4 x-3|+12=27$
5. $|2 x+5|=3 x$

Graph the following absolute value functions
6. $y=|x+5|$
7. $y=|x|+5$
8. $y=|x+4|-2$

9. $y=-\frac{1}{2}|x-2|+5$

10. $y=-3|x|$
11. $y=-4|x+2|+3$

Algebra 2 - Unit 1 - Day 8
Domain and Range

Name:
Period: \square Date: \qquad
Given the following information, find the domain and range for the following.

1. $(1,6),(2,-7),(-1,8),(8,-3)$

2.

3. Domain: \qquad
4. Domain: \qquad

Range: \qquad

6. Domain: \qquad 7. Domain: \qquad 8. Domain: \qquad
Range: \qquad Range: \qquad Range: \qquad

9. Domain: \qquad Range: \qquad
10. Eric wants to buy T-shirts for homecoming. It costs $\$ 20$ for a design fee, and each T-shirt is $\$ 5$. Eric knows that the amount of money it costs to produce the homecoming T-shirts is dependent on the number of Tshirts he orders. Write a function for Eric, and then state the domain and range of that function.

Algebra 2 Algebra 2 - Unit 1 - Day 9
Notation

Name:
Period: \qquad

Given the following graph, write the domain and range in inequality, set, and interval notation. Also, describe using words.
1.

	In words	Inequality	Set	Interval
D				
R				

2.

	Inequality	Set	Interval
D			
R			

	Inequality	Set	Interval
D			
R			

4.

	Inequality	Set	Interval
D			
R			

5. Given the graph of $f(x)$ below, which of the following statements are true? Select all that apply.
A. The rate of change over the interval $(0, \infty)$ is $-\frac{1}{2}$.
B. The domain is $(-\infty, \infty)$.
C. The domain is $(-\infty, 0]$.
D. The range is $(-\infty, \infty)$.
E. The range is $(-\infty, 0]$.
F. The function $f(x)=-\frac{1}{2}|x|$ represents the graph.

6. The table below shows the fees for renting a boat at the lake. What is the domain and range of the function?

Hours, x	$0<x \leq 2$	$2<x \leq 4$	$4<x \leq 8$	$8<x \leq 10$
Cost, y	$\$ 350$	$\$ 500$	$\$ 800$	$\$ 1000$

A. $\mathrm{D}:\{\mathrm{x} \mid 0<\mathrm{x} \leq 10\}$
C. D: $\{0,2,4,8,10\}$
$R:\{y \mid 350 \leq y \leq 1000\}$
R: $\{y \mid 350 \leq y \leq 1000\}$
B. $D:\{x \mid 0<x \leq 10\}$
D. D: $\{0,2,4,8,10\}$
R: $\{350,500,800,1000\}$
R: $\{350,500,800,1000\}$

Algebra 2 - Unit 1 - Day 10
Graph Piecewise Functions - Restricted Domains

Name:
Period: \qquad

Evaluate the piecewise functions given the following domains.

$$
h(x)=\left\{\begin{array}{r}
x+5, \text { if } x \leq-1 \\
-3 x+1, \text { if } x>-1
\end{array}\right.
$$

1) when $x=1$
2) for $\mathrm{h}(-3)$
3) when $x=-1$

$$
g(x)=\left\{\begin{array}{r}
\frac{1}{2} x+\frac{3}{4}, \text { if } x<-1 \\
x^{2}-1, \text { if }-1 \leq x<4 \\
\sqrt{3 x+4}, \text { if } x \geq 4
\end{array}\right.
$$

4) when $x=4$
5) when $x=-\frac{5}{2}$
6) $\mathrm{g}(-1)$
7) $g(\pi)$
8) $g(x)=\{2 x$, if $x<0$
9) $f(x)=\{-x+3$, if $x>0$

Use the graph to evaluate $g(-2)$ \qquad Use the graph to evaluate the function at $\mathrm{x}=4$ \qquad
10) $f(x)=\{4$, if $x \leq-1$

Evaluate the function at $\mathrm{x}=0$
11) $g(x)=\{2-x$, if $x>1$

Evaluate the function at $\mathrm{g}(3)$ \qquad

Algebra 2 - Unit 1 - Day 11
Graph Piecewise Functions - Part 2

Name:
Period: \qquad Date: \qquad
Graph the following piecewise functions. Then evaluate the function to find the given value.

1) $f(x)=\left\{\begin{array}{r}-\frac{1}{2} x-2, \text { if } x<0 \\ \frac{1}{2} x,\end{array}\right.$ if $x \geq 0$
2) $h(x)=\left\{\begin{array}{r}-2 x-1, \text { if } x<1 \\ x+1, \text { if } x \geq 1\end{array}\right.$
3) $g(x)=\left\{\begin{array}{r}3-\frac{1}{2} x, \text { if } x<2 \\ -2, \text { if } x \geq 2\end{array}\right.$

Evaluate the function at $\mathrm{x}=-2$

Evaluate the function at $\mathrm{x}=1$

Evaluate the function at $g(3)$
4) $f(x)=\left\{\begin{array}{c}x+4, \text { if } x<-1 \\ 3, \text { if }-1 \leq x \leq 2 \\ -\frac{1}{2} x+4, \text { if } x>2\end{array}\right.$

Evaluate the function at $x=-4$

Evaluate the function at $\mathrm{f}(4)$
\qquad
6. Which piecewise function is represented by the graph?
A. $f(x)=\left\{\begin{array}{cc}3 x+2, & x<1 \\ x-1, & x>1\end{array}\right.$
B. $f(x)=\left\{\begin{array}{c}3 x+2, x \leq 1 \\ x-1, x>1\end{array}\right.$
C. $f(x)=\left\{\begin{array}{cc}3 x+2, & x \geq 1 \\ x-1, & x>1\end{array}\right.$
D. $f(x)=\left\{\begin{array}{l}x-1, x<1 \\ 3 x+2, \quad x \geq 1\end{array}\right.$

7. Which of the following piecewise functions represents the graph below?
A. $f(x)=\left\{\begin{array}{lr}\frac{3}{2} x+1, & x<-2 \\ 2 x+3, & -2 \leq x<1 \\ -x+2, & x \geq 1\end{array}\right.$
B. $f(x)=\left\{\begin{array}{lr}-\frac{3}{2} x+1, & x<-2 \\ 2 x+3, & -2 \leq x<1 \\ x+2, & x \geq 1\end{array}\right.$
C. $f(x)=\left\{\begin{array}{lr}-\frac{3}{2} x+1, & x \leq-2 \\ 2 x+3, & -2<x \leq 1 \\ x+2, & x>1\end{array}\right.$
D. $f(x)=\left\{\begin{array}{rr}\frac{3}{2} x+1, & x \leq-2 \\ 2 x+3, & -2<x \leq 1 \\ -x+2, & x>1\end{array}\right.$

