Day 1 - Long Division

Objectives: SWBAT Factor and Divide Polynomials
Review:

1. $1 2 \longdiv { 5 0 2 }$
a. $4,543 \div 83$

Polynomial Long Division

$$
x-3 \begin{array}{r}
2 x^{2}+x-5 \\
\frac{2 x^{3}-5 x^{2}-8 x+15}{2 x^{3}-6 x^{2}} \\
x^{2}-8 x \\
\frac{x^{2}-3 x}{-5 x+15} \\
\frac{-5 x+15}{\text { Remainder } 0}
\end{array}
$$

Divide the following expressions using polynomial long division.
3. $\left(x^{3}-6 x^{2}+9\right) \div(x-4)$
4. $\left(4 x^{4}+5 x^{2}-9 x+18\right) \div\left(x^{2}+2 x+4\right)$
5. $\left(3 x^{4}-5 x^{3}+4 x-6\right) \div\left(x^{2}-5\right)$
b) $\left(2 x^{3}-5 x^{2}-8 x+15\right) \div(x-3)$

Day 2 - Synthetic Division

Objectives: SWBAT Factor and Divide Polynomials

Synthetic Division

Dividing Polynomials			
Long Division	Synthetic Division		
$2 x^{2}+x-5$			
$x - 3 \longdiv { 2 x ^ { 3 } - 5 x ^ { 2 } - 8 x + 1 5 }$	3	$\begin{array}{llll}2 & -5 & -8\end{array}$	
$2 x^{3}-6 x^{2}$		63	
$x^{2}-8 x$		$21-5$	0 Remainder
$x^{2}-3 x$			
$-5 x+15$			
$-5 x+15$			
Remainder 0			

Divide the following expressions using synthetic division.

1. $\left(\mathrm{x}^{3}+4 \mathrm{x}^{2}-5 \mathrm{x}+3\right) \div(\mathrm{x}+2)$
2. $\left(2 x^{3}+3 x^{2}-6\right) \div(x-3)$
3. $\left(7 x^{2}-14 x+4\right) \div(x+2)$
a. $\left(3 x^{4}-7 x^{2}+14 x-9\right) \div(x-1)$

Day 3 - Apply the Remainder and Factor Theorems
Objectives: SWBAT Factor a polynomial given a factor

FACTOR THEOREM or Throw Me a Bone Theorem

Fundamental Rule of Algebra

Given polynomial $f(x)$ and a factor of $f(x)$ factor $f(x)$ completely.

1. $f(x)=x^{3}-6 x^{2}+5 x+12 ; x-4$

| How many Answers will
 there be? | Will I need to do the X or
 X Box in this example? | | |
| :--- | :--- | :--- | :--- | :--- |
| Synthetic Division | Factoring | | |
| Answer | | | |

2. $y=x^{3}-9 x^{2}-4 x+36 ; x-4$

| How many Answers will
 there be? | Will I need to do the X or
 X Box in this example? | | |
| :--- | :--- | :--- | :--- | :--- |
| Synthetic Division | Factoring | | |
| Answer | | | |

3. $f(x)=2 x^{3}+x^{2}-13 x+6 ;(2 x-1)$

| How many Answers will
 there be? | Will I need to do the X or
 X Box in this example? | | |
| :--- | :--- | :--- | :--- | :--- |
| Synthetic Division | Factoring | | |
| Answer | | | |

a. $f(x)=2 x^{3}-11 x^{2}+3 x+36 ; x-3$

| How many Answers will
 there be? | Will I need to do the X or
 X Box in this example? | | |
| :--- | :--- | :--- | :--- | :--- |
| Synthetic Division | Factoring | | |
| Answer | | | |

Day 4 - Apply the Remainder and Factor Theorem to Solve for Zeros

Objectives: SWBAT Factor a polynomial given a factor SWBAT Find all the zeroes of a polynomial given a zero

FACTOR THEOREM

Given polynomial function $f(x)$ and a zero of $f(x)$, find the other zeros.

1. $f(x)=x^{3}-28 x-48 ; x=-2$

How many Answers will there be?		Will I need to do the X or \mathbf{X} Box in this example?		
Synthetic Division	Factoring			
	Solving			
Answer				

2. $y=x^{3}+5 x^{2}+2 x-8 ; x=-4$

| How many Answers will
 there be? | Will I need to do the X or
 X Box in this example? | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Synthetic Division | Factoring | | |
| Special Number | | | |

3. $f(x)=x^{3}-28 x-48 ; x=-2$

a. $y=x^{3}+5 x^{2}+2 x-8 ; x=-4$

| How many Answers will
 there be? | | Will I need to do the X or
 X Box in this example? | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Synthetic Division | Factoring | | |

Synthetic Division with Fractions

4. $f(x)=2 x^{3}-18 x-x^{2}+9 ; x=\frac{1}{2}$

Given polynomial function $f(x)$ and a zero of $f(x)$, find the other zeros.

$$
f(x)=3 x^{3}-4 x^{2}-17 x+6 ; \frac{1}{3}
$$

| How many Answers will
 there be? | Will I need to do the X or
 X Box in this example? | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Xynthetic Division | Factoring | | |

Day 7 - Apply the Rational Zero Theorem - Finding Lists of Zeros

Objectives: SWBAT find the possible number of zeros without given a calculator
Leading Coefficient
Constant

RATIONAL ZERO THEOREM

List the possible rational zeros \boldsymbol{f} using the rational zero theorem.

1. $f(x)=x^{3}+2 x^{2}-11 x+12$
2. $f(x)=4 x^{4}-x^{3}-3 x^{2}+9 x-10$

Factors of the constant term:

Factors of the leading coefficient:

Possible rational zeros:
Possible rational zeros:

Simplified list of zeros:
Simplified list of zeros:

Total Number of Possibilities	Total Number of Zeros

Total Number of Possibilities	Total Number of Zeros

3. $f(x)=2 x^{3}+3 x^{2}-11 x-6$

Factors of the constant term:

Factors of the leading coefficient:

Possible rational zeros:

Simplified list of zeros:

Total Number of Possibilities	Total Number of Zeros

a. $f(x)=x^{4}-8 x^{3}+18 x^{2}-27$

Factors of the constant term:

Factors of the leading coefficient:

Possible rational zeros:

Simplified list of zeros:
$\left.\begin{array}{|c|c|}\hline \text { Total } & \text { Total } \\ \text { Number of } \\ \text { Possibilities } & \text { Number of } \\ \text { Zeros }\end{array}\right]$

Day 8 - Apply the Rational Zero Theorem

Objectives: SWBAT find the zeros of polynomials (with an $\mathrm{a}=1$) without being given a factor

STEPS TO FINDING ALL REAL ZEROS when $a=1$

1. List all possible \qquad , aka \qquad .
2. Test these \qquad using \qquad .
HINT!!! You may have to do this more than once
3. Repeat using \qquad until the degree of the polynomial is \qquad .
4. Factor the polynomial and solve.

Find all real zeros of the function.

1. $f(x)=2 x^{3}+3 x^{2}-11 x-6$

| How many Answers will
 there be? | | Will I need to do the X or
 X Box in this example? | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Possible
 Solutions: | Simplified
 List of
 Zeros | | |
| Synthetic Division | Factoring | | |

2. $f(x)=10 x^{4}-11 x^{3}-42 x^{2}+7 x+12$

| How many Answers will
 there be? | | Will I need to do the X or
 X Box in this example? | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Possible
 Solutions: | | Simplified
 List of
 Zeros | |
| Synthetic Division | Factoring | | |

a. $h(x)=4 x^{3}-12 x^{2}-x+15$

| How many Answers will
 there be? | | Will I need to do the X or
 X Box in this example? | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Possible
 Solutions: | | Simplified
 List of
 Zeros | |
| Synthetic Division | Factoring | | |

4. Cassie is building a wooden square sandbox for a local playground. She wants the volume of the box to be 16 cubic feet. She decides that the height of the box should be x feet, and that she would like the length of each side of the square base to be three feet longer than the height. What dimensions should she build her sandbox?

Day 9 - Find Rational Zeros via a Calculator

Objectives: SWBAT find the zeros of polynomials without being given a factor

BEHAVIOR NEAR ZEROS

Bounces

Find all the zeros from the graph below.
1.

2.

a.

Find the number of solutions or zeroes for each equation or function. Then look at the graph on a calculator decide how many real solutions and imaginary solutions there are.
3. $x^{3}+5 x^{2}+4 x+20=0$
b. $f(x)=x^{4}-8 x^{3}+18 x^{2}-27$

Number of Solutions: \qquad
Number of Real Solutions: \qquad
Number of Solutions: \qquad
Number of Real Solutions: \qquad
Number of Imaginary Solutions: \qquad Number of Imaginary Solutions: \qquad

Use a Calculator to help you find all the zeros, and then prove they are zeros algebraically.
4. $2 x^{4}+x^{3}-3 x^{2}-x+1$
c. $x^{4}+8 x^{3}+16 x^{2}$

