Unit 8 – Day 12 – Graphing Rational Functions in (h,k) form

For each rational function, state the vertical and horizontal asymptotes.

1. $y = \frac{-4}{x+3} + 5$	2. $y = \frac{67}{x+11} - 19$	3. $y = \frac{-2}{x-10}$
VA	VA	VA
НА	НА	HA

For each rational function, state the domain, range, and end behavior.

4. $f(x) = \frac{2}{x-7} + 8$	5. $f(x) = \frac{-1}{x+9} - 3$
~ ~ /	A 1 2

Domain:

Range:

End Behavior:

State the asymptotes, domain, range, and end behavior for the following rational functions and then graph them.

$6. \ y = \frac{2}{x} + 1$			7. y =	$=\frac{-4}{x+1}$		
x y		x	y			
-	_		Vertical As Horizonta	ymptote:		
Domain:			Domain:			
Range:			Range:		-	
End Behavio	or:		End Behavi	or:		

Name:_____ Period: _____Date:_____

0

End Behavior:

Domain:

Range:

8.
$$y = \frac{3}{x-1} - 2$$

9.
$$y = \frac{-1}{x-4} - 1$$

x	y												x	у		_							 							
				_		_		_																			4			_
			-	+	-	+				+									-	┢	\vdash					\rightarrow	+	+	+	\neg
			+	+	+															+	\vdash					-	+	+	-	-
															ł					┢	\square			\square			+	╈		
		,	✦											≻	-			•									\rightarrow		-	≻
			-	_	_					_				-					•	-	-					_	+	+	-	_
			+	+	+					-										+	\vdash					\neg	+	+	+	-
				+														-		+						-	+	+	+	-
								-																						
		l						N	/																1					
	Vertic	al A	syn	npt	ote	:											Vertical Asymptote:								_					
	Horizontal Asymptote:										Horizontal Asymptote:																			
	Domain:											Domain:																		
	Range:											Range:																		
	End B	ehav	vior	:													End Behavior:													

10. Create a rational function with a vertical asymptote at x = 2, a horizontal asymptote at y = 4 that goes through the point (1, 2).

Unit 8 – Day 13 – Converting Rationals to Graphing Form

Name:		
Period:	Date:	

Convert the following to graphing form

1.
$$y = \frac{2x-2}{x+2}$$
 2. $y = \frac{4x-6}{x-1}$ 3. $y = \frac{3x+20}{x+8}$ 4. $y = \frac{6+2x}{x+2}$

<u>Graph the following functions</u>

7.
$$y = \frac{-2x+7}{x}$$
 8. $y = \frac{-x}{x+3}$

 Image: the symptotes: the symptotes symptotes symptotes: the symptotes symptote

Algebra 2	Name:						
Unit 8 – Day 14 – Graphing Ration	al Functions – 3 Cases	Period:Date:					
State the asymptotes for each rati	onal function.						
1. $y = \frac{2x-2}{2x+2}$	2. $y = \frac{x+1}{x^2+x-6}$	3. $y = \frac{5x^2 + 1}{x^2 + x - 12}$					
VA	VA	VA					
HA	НА	НА					

Find the *x*-values at which each rational function has a hole in its graph.

4.
$$y = \frac{-2x+8}{(x+4)(x-4)^2}$$
 5. $y = \frac{x^2+2x}{(x^2-16)(x+2)}$ 6. $y = \frac{(x+2)^2}{x^2+5x+6}$

Graph each rational function. Rewrite the function in its graphing form. List the asymptotes.

5. $y = \frac{x-1}{x+5}$

Graphing Form:

6. $y = \frac{2x-4}{x+1}$ Graphing Form:

Vertical Asymptote:

Horizontal Asymptote:

x-Intercept _____

Vertical Asymptote:

Horizontal Asymptote:

x-intercept _____

Graph each rational function. Check for any holes.

7.
$$y = \frac{x^2 - 16}{x^2 - 5x + 4}$$

8.
$$y = \frac{x^2 - 2x + 1}{x^2 + x - 2}$$

						\square			
	- +							_	┥
							_	_	┥
	\leftarrow							┢	┥─────────────────────────────
		_			_	\vdash	_	-	┥
								-	┥──── ─────────────────────────────────
					+				┥
					+	\square		+	┤
									· · · · · · · · · · · · · · · · · · ·
				V]
T T . 1 1 1									
Vertical Asympto	ote:								Vertical Asymptote:
Horizontal Asym	ptote:								Horizontal Asymptote:
Hole @									Hole @
x-Intercept									x-intercept
									f the function $f(x) = \frac{-3x+4}{2x+5}$?
				-					$f(x) \to -\frac{3}{2}$
B. as $x =$	→ -∞,	f(x)	$) \rightarrow -$	∞ an	d as	x	→ +	-00,	$f(x) \to +\frac{3}{2}$
C. as $x = x$	→ —∞,	f(x)	$) \rightarrow -$	$\frac{3}{2}$ and	d as	<i>x</i> –	→ + (∞,	$f(x) \rightarrow -\frac{3}{2}$
				2					$f(x) \rightarrow -\frac{5}{2}$

Unit 8 – Day 15 – Graphing Rational Functions in any Form

Period:_____Date:_____

Graph each rational function. State the domain and range. Check for any holes.

Name:_____

5. Create a new rational function g(x) that moves the given function f(x) up 7 and left 8 units.

$$f(x) = \frac{1}{x+3} - 10$$
 $g(x) =$

6. Create a new rational function g(x) that moves the given function down 3 and right 4 units.

$$f(x) = \frac{3x+1}{x+5} \qquad \qquad g(x) =$$

Find the Graphing Form

7. Create a new rational function g(x) that moves the given function up 1 and left 5 units.

$$f(x) = \frac{2x+1}{x+4} \qquad \qquad g(x) =$$

Find the Graphing Form

8. Translate the graph of $f(x) = \frac{6x+7}{x+1}$ one unit down and four units left. Which of the following is the function after the translations?

A.
$$g(x) = \frac{1}{x-4} - 1$$
 C. $g(x) = \frac{1}{x-3} + 5$

B.
$$g(x) = \frac{6}{x-4} - 1$$
 D. $g(x) = \frac{1}{x+5} + 5$

Name:_____ Unit 8 – Day 16 – Graphing Rational Functions with All Asymptotes Types

Period: _____Date:_____

Graph each rational function.

$1.y = \frac{2}{x^2 + 2}$	2. $f(x) = \frac{-2}{x^2 - 9}$
x y Image: Second sec	x y y y y y y y y y y y y y y
Horizontal Asymptote:	Horizontal Asymptote:
3. $f(x) = \frac{2x}{x^2 - x} + 2$	4. $f(x) = \frac{x^2 + 2x - 3}{x - 1}$
Vertical Asymptote(s):	_ Vertical Asymptote(s):
Horizontal Asymptote:	Horizontal Asymptote:
Hole(s):	Hole(s):
x-intercept:	x-intercept:

List the vertical, horizontal, and slant asymptotes of each.

7. Given $f(x) = \frac{3x+5}{x+1}$, what would be the equation of g(x) if f(x) is shifted 4 units right and 2 units down?

Unit 8 – Da	v 17 –	Solving	Rational	Functions	hv	Graphing
Omt o = Da	y 17 -	Solving	Kanonai	1 unctions	Uy	Oraphing

Name:		
Period:	Date:	

Sote each rational function by graphing. 1. $f(x) = \frac{-2x+5}{x-1}$ and g(x) = x - 1 $2. \frac{2}{x+2} - 3 = \frac{1}{2}x - 2$ Image: state stat

3.
$$f(x) = \frac{x-3}{x+1}$$
 and $g(x) = 3$

4. $2x - 8 = \frac{2}{x-3} - 2$

List the vertical and horizontal Asymptotes, the Hole, and the solution(s).

5.
$$\frac{2x+2}{x^2-2x-3} = -x$$

						▶

Vertical Asymptote:

Horizontal Asymptote:

Hole(s):_____

Solution(s):_____

- 6. Let $f(x) = \frac{2x+3}{x+3}$ and g(x) = -3x 7. Use the graph of f(x) below to help determine the values of x for which f(x) = g(x).
 - A. x = -1, 5
 - **B.** x = -2, -4
 - C. x = -3, 2
 - **D.** no solution

Algebra 2 – 2021

Graphing Rational Equations Review Worksheet

Name	
Date	Period

From the calculator graphs below, draw in, and write all asymptotes.

	E		
)		6	_
 	1	<u> </u>	

Horizontal: ______ Vertical: _____

Horizontal:	
-------------	--

Vertical: _____

2.

State the asymptotes, holes and x-intercepts, if present, then graph the function.

3. $y = \frac{-2x-5}{x+1}$				4. $y = -\frac{1}{2}$	$\frac{3}{x^2 + x - 6}$								
x y				>		y							->
Vertical Asymptote Horizontal Asympt													
Holes:													
End Behavior: $f(x) \rightarrow ___ as \ x \rightarrow \infty$					End Behavior: $f(x) \rightarrow ___ as \ x \rightarrow \infty$								

8. Create a new rational function g(x) that moves the given function f(x) up 6 and left 7 units.

 $f(x) = \frac{1}{x-4} - 10$ g(x) =

9. Create a new rational function g(x) that moves the given function down 2 and right 5 units.

$$f(x) = \frac{4x-3}{x-2} \qquad \qquad g(x) =$$

10. Translate the graph of $f(x) = \frac{1}{x}$ two units up and one unit right. Which of the following is the function after the translations?

A.
$$f(x) = \frac{1}{x+1} + 2$$

B. $f(x) = \frac{2x-1}{x-1}$
C. $f(x) = \frac{1}{x+2} + 1$
D. $f(x) = \frac{2}{x-1}$

11. Identify the asymptotes, domain and range of the function $f(x) = \frac{2}{x-2} - 8$.

- A. Asymptotes: x = 2, y = -8 $D: \{x | x \neq 2\}$ $R: \{y | y \neq -8\}$
- **B.** Asymptotes: None D: {all real numbers} R: {all real numbers}

- C. Asymptotes: x = 0, y = -1 $D: \{x | x \neq 0\}$ $R: \{y | y \neq -1\}$
- **D.** Asymptotes: x = 2, y = -1 $D: \{x | x \neq 2\}$ $R: \{y | y \neq -1\}$
- 12. Which of the following is an equivalent form of $f(x) = \frac{2x+3}{x-3}$?
 - A. $f(x) = \frac{2}{x-3} + 3$ B. $f(x) = \frac{2}{x-3} + 9$ C. $f(x) = \frac{3}{x-3} + 9$ D. $f(x) = \frac{9}{x-3} + 2$

- 13. Which statement describes the end behavior of the function $f(x) = \frac{3x+4}{x-5}$?
 - A. as $x \to -\infty$, $f(x) \to +5$ and as $x \to +\infty$, $f(x) \to +5$
 - **B.** as $x \to -\infty$, $f(x) \to -\infty$ and as $x \to +\infty$, $f(x) \to +3$
 - **C.** as $x \to -\infty$, $f(x) \to +3$ and as $x \to +\infty$, $f(x) \to +3$
 - **D.** as $x \to -\infty$, $f(x) \to +3$ and as $x \to +\infty$, $f(x) \to +5$
- 14. Which is a graph of $f(x) = \frac{3x+1}{x+3}$ with any vertical or horizontal asymptotes indicated by dashed lines?

A. $y = \frac{x}{x-2} + 1$ B. $y = \frac{3}{x+2} + 1$ C. $y = \frac{x^2 + 2x}{x^2 - 4}$ D. $y = \frac{x+2}{x^2 - 4}$

