## Algebra 2

Unit 8 - Day 12 - Graphing Rational Functions in (h,k) form

Name: $\qquad$
Period: $\qquad$ Date: $\qquad$
For each rational function, state the vertical and horizontal asymptotes.

1. $\mathrm{y}=\frac{-4}{x+3}+5$
2. $y=\frac{67}{x+11}-19$
3. $y=\frac{-2}{x-10}$

VA
VA
VA

HA
HA
HA

## For each rational function, state the domain, range, and end behavior.

4. $\mathrm{f}(\mathrm{x})=\frac{2}{x-7}+8$
5. $f(x)=\frac{-1}{x+9}-3$
Domain:
Domain:
Range:
Range:
End Behavior:
End Behavior:

State the asymptotes, domain, range, and end behavior for the following rational functions and then graph them.
6. $y=\frac{2}{x}+1$
7. $y=\frac{-4}{x+1}$

| $x$ | $y$ |
| :--- | :--- |
|  |  |
|  |  |
|  |  |



Vertical Asymptote: $\qquad$
Horizontal Asymptote: $\qquad$ Horizontal Asymptote: $\qquad$
Domain: $\qquad$
Range: $\qquad$


Vertical Asymptote: $\qquad$

Domain: $\qquad$
Range: $\qquad$
End Behavior:
End Behavior:
8. $y=\frac{3}{x-1}-2$
9. $y=\frac{-1}{x-4}-1$

| $x$ | $y$ |
| :---: | :---: |
|  |  |
|  |  |
|  |  |



Vertical Asymptote: $\qquad$ Vertical Asymptote: $\qquad$
Horizontal Asymptote: $\qquad$ Horizontal Asymptote: $\qquad$

Domain: $\qquad$
Range: $\qquad$
End Behavior:

Domain: $\qquad$
Range: $\qquad$
End Behavior:
10. Create a rational function with a vertical asymptote at $x=2$, a horizontal asymptote at $y=4$ that goes through the point $(1,2)$.

Algebra 2
Unit 8 - Day 13 - Converting Rationals to Graphing Form

Name: $\qquad$
Period: $\qquad$ Date: $\qquad$

## Convert the following to graphing form

1. $y=\frac{2 x-2}{x+2}$
2. $y=\frac{4 x-6}{x-1}$
3. $y=\frac{3 x+20}{x+8}$
4. $y=\frac{6+2 x}{x+2}$

## Graph the following functions

5. $y=\frac{x-4}{x-5}$
6. $y=\frac{x-3}{x+2}$

| $x$ | $y$ |
| :---: | :---: |
|  |  |
|  |  |
|  |  |





Vertical Asymptotes: $\qquad$ Vertical Asymptotes: $\qquad$
Horizontal Asymptotes: $\qquad$ Horizontal Asymptotes: $\qquad$
Domain: $\qquad$ Domain: $\qquad$
Range: $\qquad$ Range: $\qquad$
7. $y=\frac{-2 x+7}{x}$
8. $y=\frac{-x}{x+3}$

| $x$ | $y$ |
| :--- | :--- |
|  |  |
|  |  |
|  |  |



| $x$ | $y$ |
| :--- | :--- |
|  |  |
|  |  |
|  |  |



Vertical Asymptotes: $\qquad$ Vertical Asymptotes: $\qquad$
Horizontal Asymptotes: $\qquad$ Horizontal Asymptotes: $\qquad$
Domain: $\qquad$ Domain: $\qquad$
Range: $\qquad$ Range: $\qquad$
9. $y=\frac{4}{x}$
10. $y=\frac{x}{x-2}$

| $x$ | $y$ |
| :--- | :--- |
|  |  |
|  |  |
|  |  |




Vertical Asymptotes: $\qquad$ Vertical Asymptotes:

Horizontal Asymptotes: $\qquad$ Horizontal Asymptotes: $\qquad$
Domain: $\qquad$ Domain: $\qquad$
Range: $\qquad$ Range: $\qquad$

## Algebra 2

Unit 8 - Day 14 - Graphing Rational Functions - 3 Cases
Name: $\qquad$
Period: $\qquad$ Date: $\qquad$
State the asymptotes for each rational function.

1. $y=\frac{2 x-2}{2 x+2}$
2. $y=\frac{x+1}{x^{2}+x-6}$
3. $y=\frac{5 x^{2}+1}{x^{2}+x-12}$

VA
HA
VA
HA
VA
HA

## Find the $x$-values at which each rational function has a hole in its graph.

4. $y=\frac{-2 x+8}{(x+4)(x-4)^{2}}$
5. $\mathrm{y}=\frac{x^{2}+2 x}{\left(x^{2}-16\right)(x+2)}$
6. $y=\frac{(x+2)^{2}}{x^{2}+5 x+6}$

Graph each rational function. Rewrite the function in its graphing form. List the asymptotes.
5. $y=\frac{x-1}{x+5}$
Graphing Form:
6. $y=\frac{2 x-4}{x+1} \quad$ Graphing Form:


Vertical Asymptote: $\qquad$
Horizontal Asymptote: $\qquad$
Vertical Asymptote: $\qquad$
Horizontal Asymptote: $\qquad$
x-intercept $\qquad$
x-Intercept $\qquad$

Graph each rational function. Check for any holes.
7. $y=\frac{x^{2}-16}{x^{2}-5 x+4}$
8. $y=\frac{x^{2}-2 x+1}{x^{2}+x-2}$


Vertical Asymptote: $\qquad$
Horizontal Asymptote: $\qquad$
Hole @
x-Intercept $\qquad$


Vertical Asymptote: $\qquad$
Horizontal Asymptote: $\qquad$
Hole @
x-intercept $\qquad$
9. Which statement describes the end behavior of the function $f(x)=\frac{-3 x+4}{2 x+5}$ ?
A. as $x \rightarrow-\infty, f(x) \rightarrow+\frac{3}{2}$ and as $x \rightarrow+\infty, f(x) \rightarrow-\frac{3}{2}$
B. as $x \rightarrow-\infty, f(x) \rightarrow-\infty$ and as $x \rightarrow+\infty, f(x) \rightarrow+\frac{3}{2}$
C. as $x \rightarrow-\infty, f(x) \rightarrow-\frac{3}{2}$ and as $x \rightarrow+\infty, f(x) \rightarrow-\frac{3}{2}$
D. as $x \rightarrow-\infty, f(x) \rightarrow-\infty$ and as $x \rightarrow+\infty, f(x) \rightarrow-\frac{5}{2}$

Algebra 2
Name: $\qquad$
Unit 8 - Day 15 - Graphing Rational Functions in any Form
Period: $\qquad$ Date: $\qquad$
Graph each rational function. State the domain and range. Check for any holes.


Domain: $\qquad$ x-int: $\qquad$ Domain: $\qquad$ x-int: $\qquad$
Range: $\qquad$ Range: $\qquad$
3. $\mathrm{f}(\mathrm{x})=\frac{x-3}{x^{2}-2 x-3}$
4. $\mathrm{y}=\frac{x^{2}-9}{x^{2}+6 x+9}$




Domain: $\qquad$ x-int: $\qquad$
Range: $\qquad$
Domain: $\qquad$ x-int: $\qquad$
Range: $\qquad$
Hole @
5. Create a new rational function $g(x)$ that moves the given function $f(x)$ up 7 and left 8 units. $\mathrm{f}(\mathrm{x})=\frac{1}{x+3}-10 \quad \mathrm{~g}(\mathrm{x})=$
6. Create a new rational function $\mathrm{g}(\mathrm{x})$ that moves the given function down 3 and right 4 units.
$f(x)=\frac{3 x+1}{x+5}$

$$
\mathrm{g}(\mathrm{x})=
$$

Find the Graphing Form
7. Create a new rational function $g(x)$ that moves the given function up 1 and left 5 units.
$\mathrm{f}(\mathrm{x})=\frac{2 x+1}{x+4}$

$$
\mathrm{g}(\mathrm{x})=
$$

Find the Graphing Form
8.

Translate the graph of $f(x)=\frac{6 x+7}{x+1}$ one unit down and four units left. Which of the following is the function after the translations?
A. $g(x)=\frac{1}{x-4}-1$
B. $g(x)=\frac{6}{x-4}-1$
C. $g(x)=\frac{1}{x-3}+5$
D. $g(x)=\frac{1}{x+5}+5$

Algebra 2
Unit 8 - Day 16 - Graphing Rational Functions with All Asymptotes Types
Name: $\qquad$

## Graph each rational function.

$$
\text { 1. } y=\frac{2}{x^{2}+2}
$$

2. $\mathrm{f}(\mathrm{x})=\frac{-2}{x^{2}-9}$

| $x$ | $y$ |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



Vertical Asymptote(s): $\qquad$ Vertical Asymptote(s): $\qquad$
Horizontal Asymptote: $\qquad$ Horizontal Asymptote:


$\qquad$
3. $f(x)=\frac{2 x}{x^{2}-x}+2$


4. $\mathrm{f}(\mathrm{x})=\frac{x^{2}+2 x-3}{x-1}$



Vertical Asymptote(s): $\qquad$ Vertical Asymptote(s): $\qquad$
Horizontal Asymptote: $\qquad$
Hole(s): $\qquad$
x-intercept: $\qquad$
Horizontal Asymptote: $\qquad$
Hole(s): $\qquad$
x-intercept: $\qquad$

List the vertical, horizontal, and slant asymptotes of each.
5. $\mathrm{y}=\frac{x^{2}-x}{x-1}$
6. $\mathrm{y}=\frac{x-2}{x^{2}-x-2}$

| $x$ | $y$ |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |





Vertical Asymptote: $\qquad$ Vertical Asymptotes: $\qquad$
Horizontal Asymptote: $\qquad$ Horizontal Asymptote: $\qquad$
Hole: $\qquad$ Hole: $\qquad$
x -intercepts: $\qquad$ x-intercepts: $\qquad$

End Behavior: as $\begin{aligned} & x \rightarrow-\infty, f(x) \rightarrow \ldots \_ \text {and } \\ & x \rightarrow \infty, f(x) \rightarrow \ldots\end{aligned}$
End Behavior: as $\begin{aligned} & x \rightarrow-\infty, f(x) \rightarrow \ldots \_ \text {and } \\ & x \rightarrow \infty, f(x) \rightarrow \ldots\end{aligned}$
7. Given $f(x)=\frac{3 x+5}{x+1}$, what would be the equation of $\mathrm{g}(\mathrm{x})$ if $\mathrm{f}(\mathrm{x})$ is shifted 4 units right and 2 units down?

## Algebra 2

Unit 8 - Day 17 - Solving Rational Functions by Graphing

Name: $\qquad$
Period: $\qquad$ Date: $\qquad$

## Solve each rational function by graphing.

1. $\mathrm{f}(\mathrm{x})=\frac{-2 x+5}{x-1}$ and $\mathrm{g}(\mathrm{x})=x-1$
2. $\frac{2}{x+2}-3=\frac{1}{2} x-2$

| $x$ | $y$ |
| :--- | :--- |
|  |  |
|  |  |
|  |  |



Vertical Asymptote(s): $\qquad$
Horizontal Asymptote: $\qquad$
Solution(s): $\qquad$
4. $2 x-8=\frac{2}{x-3}-2$

| $\boldsymbol{x}$ | $\boldsymbol{y}$ |
| :--- | :--- |
|  |  |
|  |  |
|  |  |





Vertical Asymptote(s): $\qquad$ Vertical Asymptote(s): $\qquad$
Horizontal Asymptote: $\qquad$ Horizontal Asymptote: $\qquad$
Solution(s): $\qquad$ Solution(s): $\qquad$

List the vertical and horizontal Asymptotes, the Hole, and the solution(s).
5. $\frac{2 x+2}{x^{2}-2 x-3}=-x$


Vertical Asymptote: $\qquad$
Horizontal Asymptote: $\qquad$
Hole(s): $\qquad$
Solution(s): $\qquad$
6. Let $f(x)=\frac{2 x+3}{x+3}$ and $g(x)=-3 x-7$. Use the graph of $f(x)$ below to help determine the values of $x$ for which $f(x)=g(x)$.
A. $x=-1,5$
B. $x=-2,-4$
C. $x=-3,2$
D. no solution

$\qquad$
Graphing Rational Equations Review Worksheet
Date $\qquad$ Period $\qquad$

## From the calculator graphs below, draw in, and write all asymptotes.



Horizontal: $\qquad$
Vertical: $\qquad$


Horizontal: $\qquad$
Vertical: $\qquad$

State the asymptotes, holes and $x$-intercepts, if present, then graph the function.
3. $y=\frac{-2 x-5}{x+1}$
4. $y=\frac{3}{x^{2}+x-6}$

| $x$ | $y$ |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |





Vertical Asymptotes: $\qquad$ Vertical Asymptotes: $\qquad$

Horizontal Asymptotes: $\qquad$ Horizontal Asymptotes: $\qquad$
Holes: $\qquad$ Holes: $\qquad$
x-intercepts: $\qquad$ x-intercepts:

$$
f(x) \rightarrow \ldots \text { as } x \rightarrow-\infty \text { and }
$$

$$
f(x) \rightarrow \ldots \text { as } x \rightarrow-\infty \text { and }
$$

End Behavior:

$$
f(x) \rightarrow \ldots \text { as } x \rightarrow \infty
$$

$$
f(x) \rightarrow
$$

$\qquad$ as $x \rightarrow \infty$
5. $y=\frac{x^{2}+x}{x^{2}-1}$
6. Solve by graphing: $x+2=\frac{x+2}{x+3}$



Vertical Asymptotes: $\qquad$ Vertical Asymptotes:

Horizontal Asymptotes: $\qquad$ Horizontal Asymptotes: $\qquad$
Holes:
x-intercepts: $\qquad$ Answer: $\qquad$

$$
f(x) \rightarrow
$$

$\qquad$ as $x \rightarrow-\infty$ and

End Behavior:

$$
f(x) \rightarrow \quad \text { as } x \rightarrow \infty
$$

7. $y=\frac{4}{x-2}+1$


Domain: $\qquad$

Range: $\qquad$
End Behavior:

$$
\begin{aligned}
& f(x) \rightarrow \ldots \text { as } x \rightarrow-\infty \text { and } \\
& f(x) \rightarrow \ldots \text { as } x \rightarrow \infty
\end{aligned}
$$

x-intercepts: $\qquad$
Horizontal Asymptotes: $\qquad$
Holes: $\qquad$
8. Create a new rational function $g(x)$ that moves the given function $f(x)$ up 6 and left 7 units.
$f(x)=\frac{1}{x-4}-10$
$g(x)=$
9. Create a new rational function $g(x)$ that moves the given function down 2 and right 5 units.
$\mathrm{f}(\mathrm{x})=\frac{4 x-3}{x-2}$
$\mathrm{g}(\mathrm{x})=$
10. Translate the graph of $f(x)=\frac{1}{x}$ two units up and one unit right. Which of the following is the function after the translations?
A. $f(x)=\frac{1}{x+1}+2$
B. $f(x)=\frac{2 x-1}{x-1}$
C. $f(x)=\frac{1}{x+2}+1$
D. $f(x)=\frac{2}{x-1}$
11. Identify the asymptotes, domain and range of the function $f(x)=\frac{2}{x-2}-8$.
A. Asymptotes: $x=2, y=-8$
C. Asymptotes: $x=0, y=-1$
D: $\{x \mid x \neq 2\}$
$D:\{x \mid x \neq 0\}$
$R:\{y \mid y \neq-8\}$
R: $\{y \mid y \neq-1\}$
B. Asymptotes: None

D: \{all real numbers $\}$
$R$ : \{all real numbers $\}$
D. Asymptotes: $x=2, y=-1$

D: $\{x \mid x \neq 2\}$
$R:\{y \mid y \neq-1\}$
12. Which of the following is an equivalent form of $f(x)=\frac{2 x+3}{x-3}$ ?
A. $f(x)=\frac{2}{x-3}+3$
B. $f(x)=\frac{2}{x-3}+9$
C. $f(x)=\frac{3}{x-3}+9$
D. $f(x)=\frac{9}{x-3}+2$
13. Which statement describes the end behavior of the function $f(x)=\frac{3 x+4}{x-5}$ ?
A. as $x \rightarrow-\infty, f(x) \rightarrow+5$ and as $x \rightarrow+\infty, f(x) \rightarrow+5$
B. as $x \rightarrow-\infty, f(x) \rightarrow-\infty$ and as $x \rightarrow+\infty, f(x) \rightarrow+3$
C. as $x \rightarrow-\infty, f(x) \rightarrow+3$ and as $x \rightarrow+\infty, f(x) \rightarrow+3$
D. as $x \rightarrow-\infty, f(x) \rightarrow+3$ and as $x \rightarrow+\infty, f(x) \rightarrow+5$
14. Which is a graph of $f(x)=\frac{3 x+1}{x+3}$ with any vertical or horizontal asymptotes indicated by dashed lines?
A.

B.

C.


15. Which of the follow is the equation for the function to the right?
A. $y=\frac{x}{x-2}+1$
B. $y=\frac{3}{x+2}+1$
C. $y=\frac{x^{2}+2 x}{x^{2}-4}$
D. $y=\frac{x+2}{x^{2}-4}$


