Alg. 2 – Radical and Exponent Notes Day 1 – Evaluating Square Roots and Cube Roots

Objectives: Rewrite expressions involving radicals and rational exponents using the properties of exponents

Perfect Squares:				Perfect Cubes:
$1^2 =$	$6^2 =$	$11^2 =$	$16^2 =$	$1^3 =$
$2^2 =$	$7^2 =$	$12^2 =$	$17^2 =$	$2^{3} =$
$3^2 =$	$8^2 =$	$13^2 =$	$18^2 =$	$3^3 =$
$4^2 =$	$9^2 =$	$14^2 =$	$19^2 =$	$4^3 =$
$5^2 =$	$10^2 =$	$15^2 =$	$20^2 =$	$5^3 =$
Evaluating radicals 1) $\sqrt{64}$	2) −√36		3) ±√49	4) √-4
9) ³ √64	10) ∛8		11) ³ √-27	12) ³ √343

Approximate the value of the radical by listing the two integers that the radical lies between.13) $\sqrt{18}$ 14) $\sqrt{7}$ 15) $\sqrt[3]{36}$

Approximate the radical to the nearest integer.

19) $\sqrt{23}$ **20**) $\sqrt[3]{100}$

Evaluate the following expression if x = 64

22) $5\sqrt{x}$ **23)** $\sqrt[3]{x} + x$

Day 2 – Simplifying Radical Expressions

Objectives: Rewrite expressions involving radicals and rational exponents using the properties of exponents

Simplify the following radicals.

1) $\sqrt{12}$	2) $\sqrt{18}$	3) $\sqrt{48}$
4) √324	5) ³ √40	6) ∛72

Multiplying Radical Expressions

Simplify the following radical expressions.

7)	$\sqrt{6} \bullet \sqrt{12}$	8) $2\sqrt{6} \cdot 3\sqrt{3}$	9) $\sqrt{6} \bullet \sqrt{5}$
_ /)	$\sqrt{0}$ $\sqrt{12}$	$2\sqrt{0} - 3\sqrt{3}$	$\mathbf{y} = \mathbf{y}$

10) $(4\sqrt{3})^2$ 15) $\sqrt[3]{4} \cdot \sqrt[3]{12}$ 12) $\sqrt[3]{15} \cdot \sqrt[3]{15}$	10)
--	-----

Day 3 - Adding and Subtracting Radical Expressions

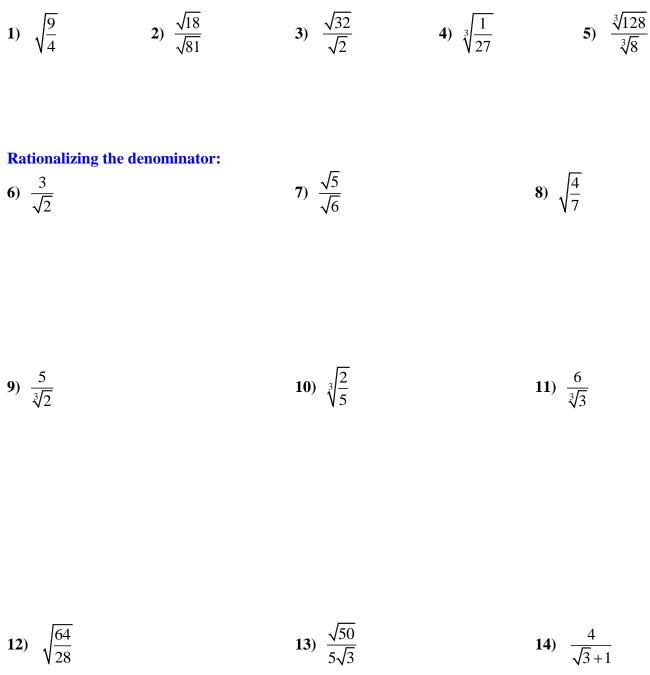
Objectives: Rewrite expressions involving radicals and rational exponents using the properties of exponents

Simplify the following radical expressions.

1) $5\sqrt{3} - 8\sqrt{3} + \sqrt{3}$ **2**) $\sqrt{12} - \sqrt{48}$

3)
$$(13+\sqrt{2})-(7-3\sqrt{2})$$
 4) $\sqrt{6}(2-\sqrt{3})$

5) $\sqrt[3]{24} + \sqrt[3]{81}$


6)
$$(\sqrt{3}-4)^2$$

7) $(\sqrt{5}-2)(\sqrt{5}+2)$

Day 4 – Dividing Radical Expressions

Objectives: Rewrite expressions involving radicals and rational exponents using the properties of exponents

Day 5 – Perform Operations with Complex Numbers (Day 1)

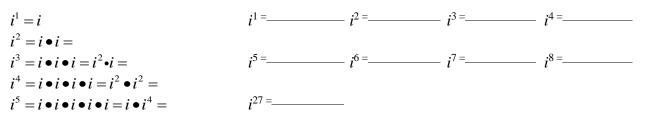
Objectives: Know there is a complex number *i* such that $i^2 = -1$, and every complex number has the form a + bi with a and b real

Imaginary unit <i>i</i> -		Complex num	nbers -
Imaginary number -			
Simplify the following square root	<u>s.</u>		
1) $\sqrt{-144}$	2) $\sqrt{-8}$		3) ³ √-64
Solve the following equations usin	g square roots.		

4) $x^2 = -81$ **5)** $x^2 + 15 = 5$ **6)** $2x^2 + 11 = -37$

SUMS AND DIFFERENCES OF COMPLEX NUMBERS

To add (or subtract) two complex numbers, add (or subtract) their _____ parts and their _____ parts separately.


Simplify the following complex expressions.

7) (7+2i) + (2+8i) **8**) (4+3i) - (2-8i)

Day 6 – Perform Operations with Complex Numbers (Day 2)

Objectives: Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers

MULITPLYING COMPLEX NUMBERS

Simplify the following complex expressions.

1) $-0(2-3i)$ 2) $(1-4i)(2-6i)$ 3) $(4-i)(3+i)$	1) $-6(2-3i)$	2) $(1-4i)(2-8i)$	3) $(4-i)(3+2i)$
---	-----------------------	---------------------------	--------------------------

Complex Conjugates -

Find the product of the following complex conjugates.

4) (3+9i)(3-9i)

Simplify each expression.

8)	5-6i	o) ¹	+i
0)	-3i	$\frac{3}{3}$	-2i

Day 7 – Exponents and Multiplying Monomials

Objectives: Use properties of exponents to simplify expressions.

Evaluating powers
1)
$$3^4$$
2) $\left(\frac{1}{2}\right)^3$
3) $(-2)^4$
4) $(-5)^3$
5) -6^2

Product of Powers:

Simplify the followi	ing expressions. Leave ansv	vers in exponential form.	
6) $x^3 \bullet x^5$	$7) y \bullet y^4$	8) $4^3 \bullet 4^2$	9) $x^3 \bullet y^4$

10)
$$(a^{3}b^{2})(a^{3}b^{4})$$
 11) $n^{3} \bullet m^{2}n$ **12**) $(-9)^{2}(-9)^{3}$ **13**) $x^{\frac{1}{2}} \bullet x^{\frac{3}{2}}$

Multiply the following expressions. Leave answers in exponential form.

14) $(8m^6)(4m^2)$ **15)** $\left(\frac{2}{3}x^4\right)\left(\frac{3}{4}x^5\right)$ **16)** $8^2 \cdot 8^7$ **17)** $\left(4m^{\frac{1}{3}}\right)\left(-2m^{\frac{5}{3}}\right)$

18)
$$-b(-a^{3}b)$$
 19) $-4(j^{2})(3jk^{3})$ **20**) $-2ab(-b^{3})(-5ac)$ **20**) $-2^{2} \bullet 2^{6}$

Day 8 – Power of a Power and Power of a Product

Objectives: Use properties of exponents to simplify expressions.

Power of a power property:

1)
$$(2^3)^2$$
 2) $(x^4)^3$ **3**) $(y^3)^{5x}$

Power of a product property:

4) $(a^{3}b^{2})^{2}$ **5)** $(-m^{7}n)^{8}$ **6)** $(3y^{6})^{2}(-x^{5}y^{2}z)^{3}$ **7)** $-y^{4}$

Quotient of a Power and Power of a Quotient

Qu	otient of a power property:				
8)	$\frac{y^4}{y}$	9)	$\frac{7^9}{7^5}$	10)	$\frac{-3w^6x^4}{9w^5x^6}$

Power of a quotient property

11)
$$\left(\frac{x^4}{y^2}\right)^3$$
 12) $\left(\frac{4m^2}{12n^5}\right)^4$ **13**) $\left(\frac{6ab^3}{(4a^3b)^2}\right)^2$

Negative and Zero Exponents

Definition of a negative exponent:14) 2^{-3} 15) $3^5 \bullet 3^{-9}$

Simplify the following expressions and write answers *without* negative exponents.

17) (al	$(b^3)(a^2b^{-4})$	18)	$\frac{-12w^{-4}x^3z^4}{15w^2x^{-5}z^4}$	19)	Evaluate:	9 ⁰
-----------------	--------------------	-------------	--	-------------	-----------	-----------------------

16) $\frac{1}{6^{-2}}$