Geometry $2021 \quad$ Unit 2: Tools of Geometry

Unit 2 - Day 1 - Points, Lines and Planes

Objectives: SWBAT identify Points, Lines, Rays, and Planes. SWBAT identify Coplanar and Non-Coplanar Points.

Notation:

	Name	Correct Notation	Common Mistakes
Point			
Line			
Plane (3 Points)			
Plane (4 Points)			

Collinear Points:

For $1-5$, use the diagram to the right, and make sure to use proper notation.

1) Write three other ways to name $\overleftrightarrow{B D}$
2) Give two other names for plane n.
a) Explain why $\overleftrightarrow{A B C}$ is not proper way to name plane n.

For the following, determine whether or not the sets are collinear, explain why or why not.
4) \quad B and F
c) $\quad \overleftrightarrow{B D}$ and E
5) $\overleftrightarrow{E B}$ and A
d) plane n and F .

For the following examples, us the diagram to the right.
e) How many planes are in the figure?
f) Name three planes.
g) Name three collinear points.

h) Are the points A, H, L and D coplanar? Explain.
i) Are the points B, D, and F coplanar? Explain.
6. $\overleftrightarrow{A B}$ is in plane Q
7. $\overleftrightarrow{S T}$ intersects $\overleftrightarrow{A B}$ at P.
8. Point X is collinear with points A and P.
9. Point Y is not collinear with points T and P.
10. Line ℓ contains points X and Y.
11. Nathan's Mother wants him to go to the post office and the supermarket. She tells him that the post office, the supermarket, and their home are collinear. If the post office is between the supermarket and their home; make a map showing the three locations based on this information.

Unit 2 - Day 2 - Angle Basics

Objectives: SWBAT measure and classify angles. SWBAT Identify and use congruent angles and angle bisectors.

Ray

Opposite rays

Angle

Sides

Vertex

Interior of an Angle

Degrees

Use the figure at the right.

1. Name the vertex of $\angle 4$.
2. Name the sides of $\angle 3$.
3. What is another name for $\angle 2$?
4. What is another name for $\angle U X Y$?
5. Why are $\angle 4$ and $\angle U$ not necessarily the same angle?

Type of Angles.

RIGHT ANGLE

ACUTE ANGLE

OBTUSE ANGLE

STRAIGHT ANGLE

Examples

Classify the following angles using a protractor and find the number of degrees.

1. $\angle P J M$
2. $\angle K J L$
a. $\angle N J K$
b. $\angle P J K$

3. Everybody look at the clock (wait for kids to find the clock..... this might take a while). Bobby was bored, and so he decided to see what kind of angles are formed by the two arms of a clock. He looked 6:00 PM, 9:00 PM, 7:10 PM, and 4:30 PM. However, because he was day dreaming and not paying attention, he could not remember what the differences between a straight, right, acute, and obtuse angles (Karma). Please help out Bobby so he doesn't look like a bum.
c. Find the total number of angles in each diagram.

Unit 2 - Day 3 - Linear Measure - Part I

Objectives: SWBAT measure segments
SWBAT calculate with measures

Line Segment

Line Segment Measure

Segment Addition Postulate

Write the segment addition postulate for each example, then right an equation to solve for the missing piece, and lastly, find the indicated value.

1. If $A B=3 \mathrm{~cm}$, and $B C=11 \mathrm{~cm}$, find $A C$.
a. If $E F=4.5 \mathrm{in}$, and $E D=0.9 \mathrm{in}$, find $D F$.

2. Find $Y Z$.

b. If $G K=75 \mathrm{~mm}$, and $H K=0.9 \mathrm{in}$, find $D F$.

3. Given: $A B=4, C D=13$, and $A D=21$ Find: $B C$

c. Given: $Q P=\frac{4}{18}, N P=\frac{2}{3}$, and $M Q=1$ Find: $M N$

Congruence

Congruent Segments

Unit 2 - Day 4 - Linear Measure - Part II

Mixed Review: Solve for \boldsymbol{x}
a. $3 x-12=41$
b. $7 m+6-2 m=16$
c. $15-3 y=4 y-6$

Write the Segment Addition Postulate for each example and then find the value of each variable (or segment measure).
1.

d.

44

3. If $M O=32$, find the value of each of the following.
I. $x=$ \qquad

II. $M N=$ \qquad
III. $N O=$ \qquad
e. If $A B=15$, find the value of each of the following.
I. $\quad y=$ \qquad
II. $A C=$ \qquad

III. $B C=$ \qquad
4. Suppose J is between H and K. Find the length of each segment.

$$
\begin{aligned}
& H J=2 x+4 \\
& J K=3 x+3 \\
& K H=22
\end{aligned}
$$

f. Suppose M is between L and $N . M L=6 x+20, M N=150-20 x$, and $L N=100$. Find the length of each segment.
5. Given: $\overline{S T} \cong \overline{S R}, \overline{Q R} \cong \overline{S R}$ Solve for \boldsymbol{x}.
(16-2x
g. Given: $\overline{X Y} \cong \overline{Y Z}, \overline{W X} \cong \overline{X Y}$, find $X \boldsymbol{Y}$

8. In the diagram below, $A E=40, A B=B C, B C=8$, and $C D=D E$.

Which of the following are true?
A. $A C=C D$
B. $A B=B C+B C$
C. $B D=B C+C D$
D. $C E=2 \cdot C D$
E. $A E=A C+C D+D E$

Unit 2 - Day 5 - Angle Addition Postulate - Part I

Objectives: SWBAT apply the AAP to solve for missing angles \& variables.

Angle Addition Postulate:

Congruent Angles

Congruence	Equal Measure
When do I write it with $a \cong$	When do I write it as =
GAUTION	

Are the following angles congruent? If they are state why, write it in both notations.
1.

2.

a.

Write the Angle Addition Postulate, and then find the following.

3. If $m \angle C A D=72^{\circ}$ and $m \angle B A C=63^{\circ}$, find the $m \angle B A D$.

c. If $m \angle 1=22^{\circ}$ and $m \angle X Y Z=86^{\circ}$, find the $m \angle 2$.

4. Given that $m \angle A B C=120^{\circ}$, find is $m \angle C B D$ and $m \angle C B E$.

d. Given that $m \angle M Q R=180^{\circ}$, find is $m \angle M Q N$ and $m \angle N Q P$.

5. Let D be in the interior of $\angle A B C . m \angle A B D=3 y+6 m \angle D B C=4 y+2$, and $m \angle A B C=78$. Find the value of y, and $m \angle A B D$.
e. If $m<E F H=35$ and $m<H F G=40$, find the $m<E F G$.

Unit 2 - Day 6 - Angle Bisectors

Angle Bisector

1. $\overrightarrow{Q R}$ is the angle bisector of $\angle \mathrm{PQS}$. Find all the angle measures not given.

a. $\overrightarrow{B F}$ is the angle bisector of $\angle \mathrm{ABC}$. Find all the angle measures not given.

2. In the Figure, $\overrightarrow{B D}$ bisects $\angle C B E$. Find \boldsymbol{x} and $m \angle C B D$.

Given: $m \angle C B D=56^{\circ}, m \angle D B E=(4 x)^{\circ}$

b. In the Figure, $\overrightarrow{L K}$ bisects $\angle J L M$. Find $m \angle J L K$ and. $m \angle M L J$

Given: $m \angle J L K=(4 x+15)^{\circ}, m \angle K L M=(6 x-5)^{\circ}$

Unit 2 - Day 7 - Segment Bisectors

Mixed Review: Solve for \boldsymbol{x} by factoring.

1. $x^{2}-x=12$
2. $x^{2}+11 x=42$
c. $x^{2}-8 x=20$

Segment Bisector

Can distance be a negative number? Explain why or why not/
3. $\overrightarrow{M N}$ is a segment bisector of $\overline{A B}$. Solve for x.

c. $\overleftrightarrow{E F}$ is a segment bisector of $\overline{S T}$. Solve for x.

4. What value of y would make $\overline{C W}$ a segment bisector of $\overline{A B}$

d) What value of x would make $\overline{T S}$ a segment bisector of $\overline{M N}$

5. Given: that $\overline{A B}$ is a bisector of $\overline{D F}$
$D P=x^{2}+3 x$
$P F=7 x+21$

Find: length of $D F$.

e. Given: that $\overleftrightarrow{P M}$ is a bisector of $\overline{L N}$

$$
L Q=x^{2}+7 x
$$

$$
Q N=5 x+48
$$

Find: length of $N Q$.

Unit 2 - Day 8 - Putting It All Together is Quadratics

Segment Addition Postulate

Segment Bisector

Angle Addition Postulate:

Angle Bisector

One of the most important tools used in Geometry is to when you don't have one.

1. Given the information below, find $A C$. B is between A and C
$A B=2 x-8$
$A C=4 x+16$
$B C=3 x-6$
a) Given the information below, find $X Y$
Y ix between X and Z
$Y Z=2 w+1$
$Z X=7 w-16$
$X Y=3 w+11$
b) Given: H is in the interior of $\angle M N P$
$m \angle M N P=150^{\circ}$
$m \angle H N P=(3 x-9)^{\circ}$
$m \angle M N H=(10 x-36)^{\circ}$
Find: $m \angle M N H$
2. Given: C is in the interior of $\angle B A D$

$$
\begin{aligned}
& m \angle C A D=\left(x^{2}\right)^{\circ} \\
& m \angle C A B=(6 x+9)^{\circ} \\
& m \angle D A B=81^{\circ}
\end{aligned}
$$

Find: x and $m \angle C A B$
c. Given: Q is in the interior of $\angle M N P$

$$
\begin{aligned}
& m \angle M N Q=\left(x^{2}-8\right)^{\circ} \\
& m \angle Q N P=(6 x-1)^{\circ} \\
& m \angle M N P=82^{\circ}
\end{aligned}
$$

Find: x and $m \angle Q N P$
4. $\overrightarrow{H F}$ bisects $\angle G H J$, find $m \angle G H J$

d. $\overrightarrow{N Q}$ bisects $\angle M N P$, find $m \angle M N Q$

Unit 2 - Day 9 - Angle Relationships

Objectives: SWBAT identify and use special pairs of angles.

SWBAT identify perpendicular lines.

Adjacent Angles

Linear Pair

Supplementary Angle

Supplementary Adjacent

Complementary Angles

Complementary Adjacent

Complementary Nonadjacent

Use the diagram on the right.

1. Are $\angle 3$ and $\angle 5$ adjacent angles?
a. Are $\angle 1$ and $\angle 2$ adjacent angles?
2. Are $\angle 1$ and $\angle 2$ a linear pair?
b. Are $\angle 3$ and $\angle 4$ a linear pair?

3. If $\mathbf{m} \angle \mathbf{3}=45^{\circ}$ then $\mathbf{m} \angle \mathbf{4}=$ \qquad .
c. If $\mathbf{m} \angle \mathbf{4}=137^{\circ}$ then $\mathbf{m} \angle \mathbf{5}=$ \qquad .

For the following, use the diagram to the right.
d. Name two pairs of complementary angles
e. What kind of angles are <RWS and <TWS?
f. What angle is supplementary <TWU?

g. Are <RWV and <VWU a linear pair? Explain why or why not.
4. Given that $\angle A$ and $\angle B$ are complementary with $m \angle A=3 x+5$ and $m \angle B=7 x+15$. Solve for x and find the measures of $\angle A$.
h. Given that $\angle D$ and $\angle E$ are complementary with $m \angle D=2 x+9$ and $m \angle B=4 x-15$. Solve for x and find the measures of $\angle D$.
7. Given that $\angle E$ is supp. to $\angle F$. If $m \angle E=15 x+16$ and $m \angle F=4 x+12$, solve for x and find the measures of $\angle F$
i. Given that $\angle C$ is supp. to $\angle D$. If $m \angle C=9 x-88$ and $m \angle D=7 x-20$, solve for x and find the measures of $\angle C$
8. Find the value of x

j. Find the value of y.

Unit 2 - Day 10 - Vertical Angles and Perpendicular Lines

Objectives: SWBAT identify and use special pairs of angles.

SWBAT identify perpendicular lines.

Vertical Angles

Perpendicular Lines

Linear Pair

Determine $\angle 1$ and $\angle 2$ are linear pair, vertical angles, or neither.
1.

2.

a.

Solve for the following variables.
3.

b.

4.

c.

5. Solve for x and y. Then find the angle measures.
$x=$ \qquad
$y=$ \qquad

$$
\mathrm{m} \angle \mathrm{HMJ}=
$$

\qquad
$\mathrm{m} \angle \mathrm{LMK}=$ \qquad
$\mathrm{m} \angle \mathrm{HML}=$ \qquad
$\mathrm{m} \angle \mathrm{JMK}=$ \qquad
d. Solve for x and y. Then find the angle measures.

$$
\begin{aligned}
& x= \\
& y= \\
& \mathrm{m} \angle \mathrm{AED}= \\
& \mathrm{m} \angle \mathrm{AEC}= \\
& \mathrm{m} \angle \mathrm{CEB}= \\
& \mathrm{m} \angle \mathrm{DEB}= \\
& \hline
\end{aligned}
$$

6. Solve for x, y, and z.

