Name:	Per:
11011101	

GEO- Unit 4 - Congruent Triangles NOTES

Day 1 - Triangles Basics

Objectives: SWBAT classify triangles by their sides and angles.

Naming Triangles:

Equilateral Triangle:

Isosceles Triangle:

Scalene Triangle:

Equiangular Triangle:

Acute Triangle:

Right Triangle:

Obtuse Triangle:

Parts of a Triangle

Vertex

Side

Angle Written

B

ANGLES

Classify each triangle by its angles and its sides (Hint: Has more than one name).

1.

2.

a.

Draw the following Triangles (if possible).

- **3.** Right Isosceles
- **4.** Obtuse Scalene
- **b.** Acute Equilateral

5. Equilateral Scalene

c. Acute Obtuse Triangle

Given the following diagram: classify the following triangles.

6. ∆*ABD*

7. ∆*BDC*

d) $\triangle ABC$

Find x and the unknown measure of the given triangles.

8.

e.

Day 2 - Triangles and their Angles

Objectives: SWBAT examine and find the measure of internal angles of a Triangle

Triangle Sum Theorem

Solve for the variable.

1.

2.

a.

Find the following angle measures.

- **3.** *M∠ACB*
- **b.** *M*∠*CDE*

4. Given $\overline{ST}||\overline{UV}$, Find b and c

Find the measure of each angle of the following triangles.DRAW THE TRIANGLES.

$$m\angle A = x^{\circ}$$

5.
$$m \angle B = (x + 30)^{\circ}$$

$$m\angle C=(x+60)^\circ$$

$$m\angle E = (6x+11)^{\circ}$$

6.
$$m \angle D = (3x+2)^{\circ}$$

$$m \angle F = (5x-1)^{\circ}$$

$$m\angle R = 90^{\circ}$$

7.
$$m \angle S = (2x+2)^{\circ}$$

$$m \angle T = (3x+3)^{\circ}$$

Day 3 - Triangles and their Angles - External Angle Theorem

Objectives: SWBAT examine and find the measure of internal and exterior angles of a Triangle

Triangle Sum Theorem

Find the following angle measures.

 $\underline{\textbf{Find the following angle measures.}}$

Find the following angle measures.

- **a.** *m*∠3
- **b.** *m*∠1
- **c.** *m*∠2

External Angle Theorem

Remote Interior Angle

Solve for the following variables

8.

10.

9.

d.

11. Find the following given that $\overline{AC}||\overline{DE}|$

$$m\angle DBE =$$

$$m\angle BCE =$$

Day 4 - Isosceles and Equilateral Triangles

Objectives: SWBAT Use properties of isosceles and equilateral triangles.

Isosceles Triangles

Legs Vertex Angles

Base Base Angles

Base Angles Theorem~

Base Angles Theorem Converse~

Equilateral Triangles

Find the value for the variable(s).

1.

2.

a.

Find all the variables.

3.

4.

b.

5.

c. Find all the variables

Day 5 - Congruence and Triangles

Objectives: SWBAT Identify congruent figures and corresponding parts. SWBAT prove that two triangles are congruent.

Congruent Triangles

Corresponding Angles:

$\Delta ABC \cong \Delta PQR$

Corresponding Sides:

<u>Given</u> Δ <u>ABC</u> \cong Δ <u>DEF</u>, find the values of all angles and sides.

$$\angle A = \overline{AB} =$$

$$\angle D = \overline{DE} =$$

$$\overline{BC} = \angle E =$$

$$\overline{EF}$$
 =

$$\overline{AC} = \angle F =$$

$$\overline{DF}$$
 =

$$SR =$$
 $\angle R =$

$$SZ =$$
_____ $\angle S =$ _____ $\Delta YXZ \cong$ _____

$$RZ =$$
_____ $\angle Z =$ _____

2. Refer to the figure below to complete the congruence statement.

Δ*ABC* ≅ _____

b. If $\triangle MNO \cong PQR$, which of the following statements are true (mark all the apply).

a)
$$\overline{MN} \cong \overline{PQ}$$

b)
$$\overline{MO} \cong \overline{PR}$$

c)
$$\overline{NO} \cong \overline{RQ}$$

d)
$$\overline{NO} \cong \overline{PQ}$$

e)
$$\angle M \cong \angle P$$

f)
$$\angle NOM \cong \angle QRP$$

g)
$$\angle N \cong \angle Q$$

h)
$$\angle ONM \cong \angle QRP$$

Given the following information, find the variables.

5. $\triangle ABC \cong \triangle FED$

6. $\Delta GJH \cong \Delta KJL$

w = _____ x = ____ y = ____

z = _____

r = _____ s = _____ t = ____ w = ____ x = ____

y = _____

Day 6 - Proving Triangles are Congruent by SSS & SAS

Objectives: SWBAT prove triangles congruent using SSS & SAS

Proving Triangle are Congruent Shortcuts

Side - Side - Side

Side - Angle (included) - Side

NO @\$\$ IN CLASS!!!!!

Reflexive Property

EXAMPLES:

Draw a picture and write a congruency statement for the following.

1.
$$\overline{AC} \cong \overline{NO}$$
, $\overline{CL} \cong \overline{OP}$, $\angle C \cong \angle O$ **2.** $\overline{WX} \cong \overline{AB}$, $\overline{XZ} \cong \overline{BC}$, $\overline{WZ} \cong \overline{AC}$

2.
$$\overline{WX} \cong \overline{AB}$$
, $\overline{XZ} \cong \overline{BC}$, $\overline{WZ} \cong \overline{AC}$

Examples: Determine if the following Triangles are congruent and if so why? If not why?

*****SIMPLY PUTTING SSS AND SAS IS NOT SUFFICIENT*****

Ex III B

Ex IV

Ex V

Ex VI

Day 7 - Proving Triangles are Congruent by ASA & AAS

Objectives: SWBAT prove triangles congruent using ASA & AAS

Angle - Angle - Side (not included side)

Angle - Side (included) - Angle

Examples:

Draw a picture and write a congruency statement for the following.

1. In $\triangle ABC$ and $\triangle ZXR$, $\angle C \cong \angle X$, $\angle A \cong \angle Z$, and $\overline{AB} \cong \overline{ZR}$.

2. In $\triangle DEF$ and $\triangle BGO$, $\angle D \cong \angle B$, $\angle E \cong \angle O$, and $\overline{DE} \cong \overline{BO}$.

Examples: Determine if the following Triangles are congruent and if so why? If not why?

*****SIMPLY PUTTING ASA AND AAS IS NOT SUFFICIENT*****

- **3.** Given $\overline{AB} \cong \overline{DE}$ and $\overline{AB} \parallel \overline{DE}$, which triangle congruence can be used to show $\triangle ABC \cong \triangle DEC$? Choose **all** that apply. A. SAS B. AAS
 - C. ASA
 - D. HL
 - E. None

Day 8 - Proving Triangles are Congruent by HL

Objectives: SWBAT prove triangles congruent using HL

Hypotenuse Leg - HL-

Determine if the following Triangles are congruent and if so why? If not why?

*****SIMPLY PUTTING HL IS NOT SUFFICIENT*****

Day 9 - Using Congruent Triangles

Objectives: SWBAT Use congruent triangles to find other information about those triangles

What are the different triangle theorems we have learned so far? LIST THEM!

Corresponding Parts of Congruent Triangles are Congruent (CPCTC)

Tell how the following Triangles are congruent. Then, find the missing variable.

1.

Triangles are Congruent because

Solve for x

3.

Triangles are Congruent because

Solve for y

5.

Triangles are Congruent because

Solve for b

2.

Triangles are Congruent because

Solve for w

4.

Triangles are Congruent because

Solve for z

6.

Triangles are Congruent because

Solve for x

Write a congruency statement proving the following statements.

7. Given: Diagram

Prove: $\overline{BC} \cong \overline{AD}$

8. Given: Diagram

Prove: $\angle Q \cong \angle U$

Q R

9.

MULTIPLE CHOICE PRACTICE

- **1.** In the diagram below of $\triangle AGE$ and $\triangle OLD$, $\angle GAE \cong \angle LOD$ and $AE \cong OD$. To prove that $\triangle AGE \cong \triangle OLD$ by SAS, what other information is needed?
 - **(1)** *GE* ≅*LD*

 - (2) AG≅OL (3) ∠AGE≅∠OLD
 - (4) ∠AEG≅∠ODL

- **2.** Which statements could be used to prove that $\triangle ABC$ and $\triangle XYZ$ are congruent?
 - (1) $\overline{AB} \cong \overline{XY}, \overline{BC} \cong \overline{YZ}, \text{ and } \angle A \cong \angle X$
 - (2) $\overline{AB} \cong \overline{XY}, \angle A \cong \angle X$, and $\angle C \cong \angle Z$
 - (3) $\angle A \cong \angle X$, $\angle B \cong \angle Y$, and $\angle C \cong \angle Z$
 - (4) $\angle A \cong \angle X$, $\overline{AC} \cong \overline{XZ}$, and $\overline{BC} \cong \overline{YZ}$

- **3.** In the accompanying diagram, $\overline{EC} \cong \overline{FA}$ and $\overline{EC} || \overline{FA}$. Triangle EGC can be proved congruent to triangle FGA by
 - (1) HL
 - (2) AAA (3) AAS

 - (4) SSA