Unit 5: Transformations Name:

Transformation Rules

TRANSLATION		
Explanation	Coordinate Form	Vector Form

REFLECTION

Explanation	OVER $y=x$ $\mathrm{y}=-\mathrm{x}$	OVER y axis	OVER x axis	LINE $y=$ A Number	LINE $x=$ A Number
When can't I count?					

ROTATION

Explanation	90 Degrees Counterclockwise	180 Degrees Counterclockwise	270 Degrees Counterclockwise
What do I do when I don't rotate around the origin?			

Day 1 - Reflections

Objectives: SWBAT find the reflections of images and points over lines and axis

Reflection

Line of reflection

Plot the point's reflection over the x axis, y axis, and $y=x$.

$$
\text { xaxis } \quad y \text { axis } \quad y=x \quad y=-x
$$

1. $\mathrm{A}(3,2)$
2. $B(5,0)$
3. $\mathrm{C}(-3,-1)$

Reflect the following over the given line of reflection

4. Reflect over the x-axis

5. Reflect over the $y=x$

6. Reflect over the y-axis

7. Reflect over the $y=-x$

- Reflection over the line $y=\#$ or $x=\#$

Triangle $J K L$ has vertices $J(0,3), K(-2,-1)$, and $L(-6,1)$. Graph $\triangle J K L$ and its image in the line $x=-4$.
Find a corresponding point for each vertex so that a vertex and its image are equidistant from the line $x=-4$.

Plot each point, then plot its' reflection in the line $y=2$. Name the point.
8. $M(4,4)$
9. $\mathrm{N}(-5,2)$
10. $P(-2,-4)$

11. What are the coordinates of the $\overline{A B}$ after the translation of $(x, y) \rightarrow(x-6, y+1)$ and then reflected over the line $y=x$

12.

Given quadrilaterals $J(-3,1), K(-1,3), L(1,3)$, and $M(-3,-1)$ and its image $J^{\prime}(1,-3)$, $K^{\prime}(3,-1), L^{\prime}(3,1)$, and $M^{\prime}(-1,-3)$, describe the transformation using coordinate notation.
13. Given $J(-4,1)$, find J ' based on the following scenarios.
a) $x=5$
b) $y=-2$
c) $y=x$

Day 2 - Translations

Objectives: SWBAT translate point and images on a coordinate plane

Translation

Preimage [A]

Image [A^{\prime}]

Coordinate Notation

Consider the translation that is defined by the coordinate notation

$$
(x, y) \rightarrow(x+2, y-3)
$$

1. What is the image of $(3,-4)$?
2. What is the pre-image of $(5,8)$?

Draw the following segments after the translation.

3. $(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}+1, \mathrm{y}-5)$

4. Graph the image after a translation of $\langle-1,-4\rangle$

5. Find $\triangle L M N$, where
$L^{\prime}(0,4), M^{\prime}(2,-1), N^{\prime}(-2,0)$ with a translation of $(3,1)$, and then graph the image.

Describe the transformation that map A to A^{\prime}.

7.

8.

9. Given the point $A(-3,0)$. A is translated five units up and 6 units to the right. A' is then translated $(x, y) \rightarrow(x, y-4)$. What is the coordinate of $A^{\prime \prime} ?$
10.

Under which of the following translations does the image of rectangle $W X Y Z$ not overlap the preimage?
A. $(x, y) \rightarrow(x+0, y-1.5)$
B. $(x, y) \rightarrow(x+3.5, y+0)$
C. $(x, y) \rightarrow(x-1, y+0)$
D. $(x, y) \rightarrow(x-3, y+2)$

Day 3 - Rotations

Objectives: SWBAT find and rotate images and points over center of rotation at the origin

Rotation

Center of Rotation

Angle of Rotation

Clockwise

Counter Clockwise

A
CAUTION

Convert the following clockwise measurements to counterclockwise measurements.
A) 90 degrees is \qquad counterclockwise
B) 180 degrees is \qquad counterclockwise
C) 270 degrees is \qquad counterclockwise

Rotating when a point is on an axis...

1. Rotate B 90° clockwise
2. Rotate B $\mathbf{2 7 0}^{\circ}$ counterclockwise
3. Rotate A 270° clockwise
4. 180 degrees counterclockwise

Rotating when a point around the origin

Special Rotation Rules

90°
180°
$\underline{270^{\circ}}$

OA

Rotate B around the origin the given amount.

5. 90° counterclockwise

6. 270° counterclockwise

7. 90° clockwise

8. 180° clockwise

9. 180° counterclockwise

10. Graph $\triangle X Y Z$ with vertices $X(2,0)$, $Y(7,0)$, and $Z(2,6)$. Then rotate it 180 degrees around the origin.

11. Rotate $\triangle A B C \quad 90^{\circ}$ counterclockwise around the origin. The vertices are $A(0,2), B(3,1)$ and $C(4,3)$.

Figure ABC is rotated 90° clockwise about the point $(2,0)$. What are the coordinates of A^{\prime} after the rotation?
A. $A^{\prime}(-1,4)$
B. $A^{\prime}(3,-6)$
C. $A^{\prime}(5,-4)$
D. $A^{\prime}(6,-3)$

Day 4 - PUTTING IT ALL TOGETHER

RIGHT a units:
LEFT a units:
UP b units:
DOWN b units:

	Across the x - axis:
	Across the y-axis:

1. The point $P(-2,-5)$ is rotated 90° counter clockwise about the origin, and then the image is reflected across the line $x=3$. What are the coordinates of the final image P " ?

2. What are the coordinates for the image of $\triangle G H K$ after a rotation 90° clockwise about the origin and a translation of $(x, y) \rightarrow(x+3, y+2)$?

For problems 3-5, Write the rules and find the new coordinate points after the transformation.
3. Reflect across the x-axis Rule

Then, Translate Left 4, Up 7 Rule
Use these transformations for $\mathrm{Y}(-3,6)$
4. Translate right 5, Rule

Then rotate 180 clockwise Rule
Use these transformations for $B(2,-7)$
5. Reflect across $y=x \quad$ Rule

Rotation 90 clockwise Rule
Use these transformations for $\mathrm{M}(5,7)$
6.

The point $P(-2,-5)$ is rotated 90° counterclockwise about the origin, and then the image is reflected across the line $x=3$. What are the coordinates of the final image $P^{\prime \prime}$?
A. $(1,-2)$
B. $(11,-2)$
C. $(-2,1)$
D. $(2,11)$

