UNIT 10 – Circles NOTES

Name:

Day 1 Circle Basics

Objectives: SWBAT identify segments and lines related to circles. **SWBAT** Use properties of a tangent to a circle.

- A. Definitions in Circles
 - 1. Circle
 - 2. Radius
 - 2. Diameter
 - 3. Chord
 - 4. Interior of a Circle
 - 5. Exterior of a Circle
 - 6. On the Circle

Use the diagram to find the following segments (name all).

- 1. Chords
- 2. Diameters
- 4. Radii
- 5. Center of a Circle

Diameter of a Circle Formula

Examples:

Use the diagrams to find the following.

1. The diameter of $\bigcirc S$ is 30 cm. The diameter of $\bigcirc R$ is 20 cm. DS = 9 Find the length of CD.

All Radii the same circle are _____

2. Given: DB = 13 units long Find the length of EC.

Area of a Circle Formula

Circumference of a Circle Formula

The ______ is the common variable in <u>all three</u> of the above formulas.

Find the following.

- 3. A circle has a radius of 3ft. What's the diameter?
- 4. A circle has a diameter of 5in. What's the radius?

- 5. If a circle has a diameter of 6ft. What's the Circumference?
- 6. What is the area of a circle if the circumference is $20\pi in$?
- 7. Using a string a student decided to determine the diameter of a large trash can. If the string 60 inches long will wrap around the trash can, what is approximate diameter of the trash can?

Day 2 Central Angles and Arcs

Objectives: SWBAT use properties of arcs of circles. **SWBAT** use properties of chords of circles.

360 Degree Theorem -

Central Angle -

Arc –

Minor Arc -

Major Arc -

Semicircle –

Central Angle – Arc Theorem

When reading an arc and finding the measurements of arcs, you should always use the _____ path.

Examples:

 \overline{MQ} and $\overline{NR}\,$ are diameters. Find the indicated measure.

1. m <i>MN</i>	2. mNQ	M
3. mNQR	4. mMRP	N 70° O 30°
5. mQR	6. mMR	P

Q

R

Arc Length Formula

Find the length of the following arcs.

7.	ÛR	8. <i>RS</i>	R
9.	STU	10. <i>RT</i>	U 60° U 4 ft
11.	ŨRS	12. <i>ST</i>	T

Day 3 Inscribed Angles

Objectives: SWBAT use inscribed angles to solve problems. **SWBAT** use properties of inscribed polygons.

Inscribed angle:

Intercepted Arc:

Measure of Inscribed Angle

Examples:

Find the measure of the indicated arc or angle in $\Box O$.

1. $m \widehat{XY}$

Two Inscribed Angles Theorem

7. Find *x*

8. Find \widehat{mAB}

Inscribed Right Triangle Theorem

Inscribed Quadrilateral Theorem

11. Find the value of *x*

Day 4 Chords and Arcs

Objectives: SWBAT use properties of arcs of circles. **SWBAT** use properties of chords of circles.

1. Chord – Arc Theorem

2. Perpendicular Bisector of a Circle Theorem

Converse

3. Equidistant Chord Theorem

Examples:

Find the measure of \widehat{MN} .

<u>P is the center of the circle.</u> Use the given information to find XY.

5. ZY = 6, XW = 4

7. ALGEBRA In the figures, $\bigcirc J \cong \bigcirc K$ and $\widehat{MN} \cong \widehat{PQ}$. Find PQ.

Q

8.

In $\bigcirc H$, PQ = 3x - 4 and RS = 14. Find x.

Day 5 Tangents of Circles

Objectives: SWBAT identify segments and lines related to circles. **SWBAT** Use properties of a tangent to a circle.

Tangent

B

Examples:

1. F	A. Center
2. \overrightarrow{FE}	B. Chord
3. \overline{HG}	C. Diameter B A
4. \overline{DB}	D. Radius
5. C	E. Point of Tangency
6. \overline{BE}	F. Common External Tangent
7. \overrightarrow{DB}	G. Common Internal Tangent DE
8. \overrightarrow{AG}	H. Secant

Perpendicular Tangent Theorem

Tell whether \overrightarrow{AB} is tangent to $\bigcirc C$. Explain you reasoning

Intersecting Tangent Theorem

Examples:

14.

A freeway runs tangent to a circular lake. The distance from point B to the center of the lake is 100 miles. The distance from Point A to Point B on the freeway is 80 miles. What is the diameter of the lake?

Day 6 Angle Relationships in Circles

Objectives: SWBAT use angles formed by tangents and chords to solve problems. **SWBAT** use angles formed by lines that intersect a circle to solve problems.

2.

Intersecting a Tangent and a Chord

Examples:

Find the measure of $\angle 1$.

128°

Interior intersection of two Chords

Examples:

Find the measure of $\angle 1$.

Exterior Intersection

Angle Location		Angle – Arc Relationship	
Where is the vertex of my angle?	Angle Name		
CENTER			
ON			
INSIDE (Not Center)			
OUTSIDE			

Day 7 Segment Lengths in Circles

Objectives: SWBAT find the lengths of segments of chords. **SWBAT** find the lengths of segments of tangents and secants.

С

Examples:

Find the value of x.

Review of Factoring

X Method

$$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

Secant - Secant	Tangent - Secant	Chord - Chord	Tangent - Tangent

Day 8 Equations of Circles

Objectives: SWBAT write the equation of a circle. **SWBAT** use the equation of a circle and its graph to solve problems.

Standard Equation of Circle

Examples:

Match the equation of a circle with its description.

1. $(x+2)^2 + (y-3)^2 = 4$ a. Center (-3, 5), radius 42. $(x-2)^2 + (y-5)^2 = 4$ b. Center (-2, -3), radius 23. $(x+3)^2 + (y-5)^2 = 16$ c. Center (-2, 3), radius 24. $(x+2)^2 + (y+3)^2 = 4$ d. Center (2, -5), radius 25. $(x+3)^2 + (y+5)^2 = 16$ e. Center (-3, -5), radius 46. $(x-2)^2 + (y+5)^2 = 4$ f. Center (2, 5), radius 2

Give the center and the radius of each circle.

- **7.** $(x-4)^2 + (y+2)^2 = 25$ **8.** $(x+2)^2 + (y+4)^2 = 9$
- **9.** $(x-5)^2 + (y-3)^2 = 16$ **10.** $(x+6)^2 + (y-4)^2 = 4$

Write the standard equation of the circle with the given center and radius.**11.** center (0,4), radius 512. center (-3, 6), radius 7

13. center (0,0), radius 1

Graphing Circles

Give the coordinates of the center, the radius and the equation of the circle.

Graph the circle given the equation.

4.
$$(x+4)^2 + (y-2)^2 = 9$$

5. $(x-5)^2 + y^2 = 4$

