UNIT 10 - Circles NOTES Name:

Day 1 Circle Basics

Objectives: SWBAT identify segments and lines related to circles.
SWBAT Use properties of a tangent to a circle.

A. Definitions in Circles

1. Circle

2. Radius

2. Diameter
3. Chord
4. Interior of a Circle
5. Exterior of a Circle

6. On the Circle

Use the diagram to find the following segments (name all).

1. Chords
2. Diameters
3. Radii
4. Center of a Circle

Diameter of a Circle Formula

Examples:

Use the diagrams to find the following.

1. The diameter of $\odot S$ is $\mathbf{3 0} \mathbf{~ c m}$.

The diameter of $\odot R$ is 20 cm . DS = 9
Find the length of CD.

All Radii the same circle are \qquad .
2. Given: $\mathbf{D B}=13$ units long Find the length of EC.

Area of a Circle Formula

D

Circumference of a Circle Formula

The \qquad is the common variable in all three of the above formulas.

Find the following.
3. A circle has a radius of 3 ft . What's the diameter?
4. A circle has a diameter of 5in. What's the radius?
5. If a circle has a diameter of 6 ft . What's the Circumference?
6. What is the area of a circle if the circumference is $20 \pi i n$?
7. Using a string a student decided to determine the diameter of a large trash can. If the string 60 inches long will wrap around the trash can, what is approximate diameter of the trash can?

Day 2 Central Angles and Arcs

> Objectives: SWBAT use properties of arcs of circles.

SWBAT use properties of chords of circles.
360 Degree Theorem -

Central Angle -

Arc -

Minor Arc -

Major Arc -

Semicircle -

Central Angle - Arc Theorem

When reading an arc and finding the measurements of arcs, you should always use the \qquad path.

Examples:

$\overline{\mathrm{MQ}}$ and $\overline{\mathrm{NR}}$ are diameters. Find the indicated measure.

1. $m \widehat{M N}$
2. $m \widehat{N Q}$
3. $m \widehat{N Q R}$
4. $m \widehat{M R P}$
5. $m \widehat{Q R}$
6. $m \widehat{M R}$

Arc Length Formula

Find the length of the following arcs.
7. $\widehat{U R}$
8. $\widehat{R S}$
9. $\widehat{S T U}$
10. $\widehat{R T}$
11. $\widehat{U R S}$
12. $\widehat{S T}$

Objectives: SWBAT use inscribed angles to solve problems.

 SWBAT use properties of inscribed polygons.
Inscribed angle:

Intercepted Arc:

Measure of Inscribed Angle

Examples:

Find the measure of the indicated arc or angle in $\square O$.

1. $m \overparen{X Y}$

2. $m \angle E$

3. $m \angle R$

4. $m \widehat{B C}$
5. $m \angle B A C$

Two Inscribed Angles Theorem

8. Find $\widehat{m A B}$

10. Find $m \angle B$

Inscribed Right Triangle Theorem

11. Find the value of x

Day 4 Chords and Arcs

Objectives: SWBAT use properties of arcs of circles.
SWBAT use properties of chords of circles.

1. Chord - Arc Theorem

2. Perpendicular Bisector of a Circle Theorem

Converse

3. Equidistant Chord Theorem

Examples:

Find the measure of $\widehat{M N}$.
1.

2.

3.

P is the center of the circle. Use the given information to find $X Y$.

4. $Z Y=3$

5. $Z Y=6, X W=4$

6. Radius $=10, \mathrm{AB}=8$

7. ALGEBRA In the figures, $\odot J \cong \bigcirc K$ and $\overparen{M N} \cong \overparen{P Q}$. Find $P Q$.

8.

In $\odot H, P Q=3 x-4$ and $R S=14$. Find x.

Objectives: SWBAT identify segments and lines related to circles. SWBAT Use properties of a tangent to a circle.

Tangent

Secants

Examples:

1. F
2. $\overrightarrow{F E}$
3. $\overline{H G}$
C. Diameter
4. $\overline{D B}$
D. Radius
5. C
E. Point of Tangency
6. $\overline{B E}$
F. Common External Tangent
7. $\stackrel{\rightharpoonup}{D B}$
G. Common Internal Tangent
8. $\overrightarrow{A G}$
H. Secant
A. Center
B. Chord
,

Examples:

Tell whether $\overleftrightarrow{A B}$ is tangent to $\odot \boldsymbol{C}$. Explain you reasoning

9.

10.

Intersecting Tangent Theorem

Examples:

11.

12.

13.

14.

A freeway runs tangent to a circular lake. The distancefrom point B to the center of the lake is 100 miles. The distance from Point A to Point B on the freeway is 80 miles. What is the diameter of the lake?

Day 6 Angle Relationships in Circles

Objectives: SWBAT use angles formed by tangents and chords to solve problems. SWBAT use angles formed by lines that intersect a circle to solve problems.

Intersecting a Tangent and a Chord

Examples:

Find the measure of $\angle 1$.
1.

2.

Interior intersection of two Chords

Examples:

Find the measure of $\angle 1$.
1.

2.

3. Find $m \overparen{A B}$

Exterior Intersection

6.

Angle Location Where is the vertex of my angle?	Angle Name	Angle - Arc Relationship
CENTER		
ON		
INSIDE (Not Center)		
OUTSIDE		

Objectives: SWBAT find the lengths of segments of chords. SWBAT find the lengths of segments of tangents and secants.

Finding the Lengths of Intersecting Chords

Examples:

Fill in the blanks. Then find the value of \boldsymbol{x}.
1.

2.

3.

Finding Lengths of Secants

2. Tangent - Secant

3. Tangent - Tangent

Examples:

Find the value of x.

4.

5.

6.

Review of Factoring

X Method

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Secant - Secant	Tangent - Secant	Chord - Chord	Tangent - Tangent

Objectives: SWBAT write the equation of a circle. SWBAT use the equation of a circle and its graph to solve problems.

Standard Equation of Circle

Examples:

Match the equation of a circle with its description.

1. $(x+2)^{2}+(y-3)^{2}=4$
a. Center $(-3,5)$, radius 4
2. $(x-2)^{2}+(y-5)^{2}=4$
b. Center $(-2,-3)$, radius 2
3. $(x+3)^{2}+(y-5)^{2}=16$
c. Center $(-2,3)$, radius 2
4. $(x+2)^{2}+(y+3)^{2}=4$
d. Center $(2,-5)$, radius 2
5. $(x+3)^{2}+(y+5)^{2}=16$
e. Center $(-3,-5)$, radius 4
6. $(x-2)^{2}+(y+5)^{2}=4$
f. Center $(2,5)$, radius 2

Give the center and the radius of each circle.
7. $(x-4)^{2}+(y+2)^{2}=25$
8. $(x+2)^{2}+(y+4)^{2}=9$
9. $(x-5)^{2}+(y-3)^{2}=16$
10. $(x+6)^{2}+(y-4)^{2}=4$

Write the standard equation of the circle with the given center and radius.
11. center $(0,4)$, radius 5
12. center $(-3,6)$, radius 7
13. center $(0,0)$, radius 1

Graphing Circles

Give the coordinates of the center, the radius and the equation of the circle.

Graph the circle given the equation.
4. $(x+4)^{2}+(y-2)^{2}=9$

5. $(x-5)^{2}+y^{2}=4$

