\qquad Period: \qquad

Section: 1.6

Describe all the transformations of each function.

1) $f(x)=-\sqrt{-x+2}+9$
2) $f(x)=\sqrt[3]{2 x+3}-4$
3) $f(x)=-(2 x+5)^{2}+11$
4) $f(x)=\frac{-3}{x-4}+5$
5) Write the function that translates the given function $f(x)=-\sqrt{x+3}+17,2$ units right and 7 units up.

Section: 1.7

Find the domain of each given function.

6) $f(x)=\sqrt{-x+3}$
7) $f(x)=\frac{2}{x^{2}-7 x+6}$
8) $g(x)=\frac{5}{\frac{4}{x}+1}$

Find the following given that

$$
\begin{array}{cc}
f(x)=x-4 & j(x)=\frac{4}{x} \\
g(x)=x^{2}-16 & k(x)=\sin (x)
\end{array}
$$

9) $\frac{f(x)}{g(x)}$
10) $j(h(x))$
11) $f(g(h(1)))$
12) $g(f(x))$
13) $j(h(k(\pi)))$
14) $f(x) \cdot g(x)$

For each function below $r(x)$, write as a compostion of functions.

$$
\begin{aligned}
& \text { 15) } r(x)=\ln (3 x+14) \\
& \text { 16) } r(x)=\sqrt[3]{x+14}+13 \\
& \text { 17) } r(x)=\frac{-3}{\log (3 x+5)} \\
& \text { 18) } r(x)=\sqrt{\ln (x-9)+7}
\end{aligned}
$$

Section: 1.8

Find the inverse and state where the inverse is a function.
19) $f(x)=5 x-7$
20) $h(x)=(x-5)^{2}+4$
21) $f(x)=\ln (x+5)+7$
22) $f(x)=\sqrt[3]{2 x+3}-4$

Name: \qquad Date: \qquad Period: \qquad

1) You are choosing between two plans at a discount warehouse. Plan A offers an annual membership of $\$ 100$ and you pay 80% of the manufacturer's recommended list price. Plan B offers an annual membership fee of $\$ 40$ and you pay 90% of the recommend list price.
a) Express the total yearly amount paid to the warehouse under plan $\mathrm{A}, f(x)$, as a function of dollars of merchandise, x, purchased during the year.
b) Do the same for Plan B, and call it $g(x)$.
c) How many dollars of merchandise would you have to purchase in a year to pay the same amount under both plans?
2) An open box is made by cutting identical squares from the corners of a 16 -inch by 24 -inch piece of cardboard, and then turning up the sides. Express the volume of the box, V, as a function of the length of the side of the square cut from each corner, x.
3) You inherit $\$ 10,000.00$ with the stipulation that for the first year the money must be placed into two investments expected to earn 8% and 12% annual interest. Express the expected interest from both investments, I, as a function of the amount of money invested at $8 \%, x$.
4) A box with a square base and a square top, with side x, and height y has a volume of 8 cubic feet. Express the surface area of a box, $S A$, as a function of the length of the side of its square base, x.
5) You have 400 feet of fencing to enclose a rectangular lot and divide it in two by another fence that is parallel to one side of the lot. Express the area of the rectangular lot, A, as a function of the length of the fence that divides the rectangular lot, x.
