PreCalculus with TRIG - Unit 4 - Graphing Trig Functions

Day 4.5 - Intro to Graphing Sine and Cosine

Objectives: SWBAT graph Sine and cosine functions Today, we begin graphing $\sin (x)$ and $\cos (x)$ in the $x-y$ plane. The graphs of $\sin (x)$ and $\cos (x)$ are periodic with an oscillating pattern. We call these sinusoidal waves.

Music is composed of waves of different frequencies and amplitudes and these can be described using $\sin (x) / \cos (x)$ waves. In fact most anything involving sound waves will rely on $\sin (x)$ $/ \cos (x)$.

GPS and cellphones rely on triangulation and formulas involving $\sin (x) / \cos (x)$

Signal transmission, such as TV and radio broadcasting, involves $\sin (x) / \cos (x)$ waves.

Example 1: Graph $y=\cos (x), y=-\cos (x)$, and $y=2 \cos (x)$, using three different colors. $y=\sin (x), y=-\sin (x)$, and $y=2 \sin (x)$, using three different colors.

Sine

Cosine

$$
y=A \sin (B(x+C))+D
$$

Phase Shift:

Period:

Domain

Phase Shift Left
Range

2) Graph $y=2 \cos (x)$ List period, amplitude, phase shift, domain, and range.
$\mathbf{P}=$ \qquad
A = \qquad
D: \qquad
R: \qquad

3): Graph $y=-\frac{1}{2} \sin (x)+3$
$\mathbf{P}=$ \qquad
A = \qquad
D: \qquad
R: \qquad

a) Graph $y=-3 \cos (x)-1$
$\mathbf{P}=$ \qquad
A = \qquad
D: \qquad
R: \qquad
5) Graph $y=2 \cos (x-\pi)$
$\mathbf{P}=$ \qquad
$\mathbf{A}=$ \qquad

D: \qquad
R: \qquad

PS: \qquad

b): Graph $y=\sin \left(x+\frac{\pi}{2}\right)+3$
$\mathbf{P}=$ \qquad

A = \qquad

D: \qquad
PS: \qquad

State the phase shift and vertical shift of each.
6) $y=-5 \cos \left(x+\frac{\pi}{4}\right)+3$
7) $y=-5 \sin \left(x+\frac{\pi}{7}\right)-19$
c) $y=3 \cos 2(x-3 \pi)+11$

Objectives: SWBAT graph $\sin (x)$ and $\cos (x)$ waves with periods other than 2π as well as prepare to incorporate phase shift into the graph

Review Questions of the day:

1) State the amplitude, period, and phase shift of $y=-2 \cos \left(x+\frac{\pi}{4}\right)$.
2) State the domain and range of the above function.
3) What effect does the 4 have on the graph of $y=(x+3)^{2}+4$?
Transform Sine and Cosine Graphs

$\mathrm{y}=\mathrm{A} \sin (\mathrm{B}(\mathrm{x}-\mathrm{k}))+\mathrm{c}$
$\mathrm{y}=\mathrm{A} \cos (\mathrm{B}(\mathrm{x}-\mathrm{k}) \mathrm{c}+\mathrm{c}$

The amplitude is $|\mathrm{A}|$

GAP Amount = \qquad This will help you find the max, min, and zeros quickly. To find the GAP amount, always divide the period by \qquad for $\sin (x)$ and $\cos (x)$. Look at the base graph.

From this example, we conclude the following:

1) The period of $\boldsymbol{y}=\boldsymbol{A} \cdot \boldsymbol{\operatorname { c o s }}(\boldsymbol{B} \boldsymbol{x})$ is always \qquad . The value of B represents the number of waves completed in a normal period of 2π
2) The period of $\boldsymbol{y}=\boldsymbol{A} \cdot \boldsymbol{\operatorname { s i n }}(\boldsymbol{B x})$ is always \qquad . The value of B represents the number of waves completed in a normal period of 2π
3) When the value of B is greater than 1 \qquad .
4) When the value of B is between 0 and 1 \qquad .
5) When the value of B is 1 \qquad —.
6) When \boldsymbol{B} is inside the parenthesis you should always \qquad it out first.

Find the period of each of the following, then state if it is a stretch or shrink.

1) $y=2 \sin (0.5 x)$
2) $y=-4 \cos (5 x)$
a) $y=-3 \cos \left(\frac{x}{3}\right)$
3) $y=-3 \sin (\pi x)+7$
b) $y=55 \sin \left(\frac{\pi}{3} x\right)-5$
4) $y=-\sin \left(\frac{x}{2}\right)+2$
$\mathbf{P}=$ \qquad
A = \qquad
D: \qquad
R: \qquad
GAP: \qquad

5) $y=3 \sin (2 x)$
$\mathbf{P}=$ \qquad
A = \qquad
D: \qquad
R: \qquad
GAP: \qquad

6) $y=-2 \cos \left(\frac{x}{3}\right)-1$
$\mathbf{P}=$ \qquad
A = \qquad
D: \qquad

R: \qquad
GAP: \qquad
c) $y=\cos (3 x)+2$
$\mathbf{P}=$ \qquad
A = \qquad
D: \qquad
R: \qquad
GAP: \qquad
7) $y=-2 \cos (-0.5 \pi x)$
$\mathbf{P}=$ \qquad
$\mathbf{A}=$ \qquad

D: \qquad
R: \qquad
GAP: \qquad
7) $y=-2 \sin \left(\frac{\pi}{4} x\right)$
$\mathbf{P}=$ \qquad
$\mathbf{A}=$ \qquad
D: \qquad
R: \qquad
GAP: \qquad

Objectives: SWBAT graph $\sin (x)$ and $\cos (x)$ with all transformations

Review Questions of the day:

1) Find the period of $y=2 \sin (8 x)$.
2) Find $\sec (0)$.
3) What is the cofunction of $\csc (6)$?

$$
y=A \sin (B(x+C))+D
$$

Phase Shift Left

Follow these simple steps and you will be a GRAPHER!

1) Start at the phase shift and show your midline.
2) Begin at a max or min for $\cos (x)$ or at the midline for $\sin (x)$.
3) Check your direction (positive / negative)
4) "Go" the GAP amount to get to the next "important" point on the graph.

$$
G A P=\frac{\text { Period }}{4}
$$

5) Graph each on the trig grid
6) $y=2 \cos \frac{1}{2}\left(x+\frac{\pi}{4}\right)$

A = \qquad
$\mathbf{P}=$ \qquad
PS: \qquad
R: \qquad
GAP: \qquad

2) $y=-\sin (2 x-\pi)+1$

A = \qquad
$\mathbf{P}=$ \qquad
PS: \qquad
R: \qquad
GAP: \qquad

a) $y=3 \sin \left(\frac{x}{2}-\frac{\pi}{2}\right)$

A = \qquad
$\mathbf{P}=$ \qquad
PS: \qquad
R: \qquad
GAP: \qquad

3) $y=-0.5 \cos (\pi x-\pi)+2$
$\mathbf{A}=$ \qquad
$\mathbf{P}=$ \qquad
PS: \qquad
R: \qquad
GAP: \qquad
VS: \qquad
4) $y=-2 \cos 2\left(x+\frac{\pi}{6}\right)$

A = \qquad
$\mathbf{P}=$ \qquad

PS: \qquad
R: \qquad
GAP: \qquad

Write 2 equations for the following graphs:

Day 4.8 - Simple Harmonic Motion

Objectives: SWBAT graph $\sin (x)$ and $\cos (x)$ with all transformations

Review Questions of the day:

1) Find a coterminal angle for 11,345 degrees.
2) Find $\cos \left(\frac{7 \pi}{3}\right)$
3) Find the range of $y=4 \cos (x)+2$

SIMPLE HARMONIC MOTION: any motion that follows an up and down oscillating pattern:

Examples Include: radio waves, TV waves, the motion of a vibrating guitar string, an object that bobs up and down, for example a spring or a buoy, basically anything that follows the sine or cosine wave.

Basic Equations: $\boldsymbol{d}=A \cdot \cos (B) t$ or $\quad d=A \cdot \sin (B) t$
A = Amplitude
d = Distance or Displacement
$t=$ time
Period $=\frac{2 \pi}{B} \quad$ where $B>0$. The period represents the time it takes for the motion to go through one complete cycle.
Frequency $=\frac{1}{\text { Period }}$ The frequency represents the number of complete cycles per unit of time.

When the object is at rest at $t=0$, use sine
When the object is at a max or \min at $t=0$, use cosine.

1) Find an equation that represents the position of a ball attached to a spring hung from a ceiling. It is pulled down 7 inches and then released. If we ignore friction, the ball will continue oscillating on the end of the spring, and has a period of 8 seconds. The rest position for this ball is called the equilibrium position, $d=0$ before you pull it down.

a) the maximum displacement (amplitude)
b) the frequency
c) the time required for one cycle
d) its distance at time $=0$
2) $d=8 \cos (\pi) t$
3) $d=12 \sin \left(\frac{\pi}{4}\right)(t)$
a) $d=-9 \cos 2 t$
4) An object is attached to a coiled spring. It is pulled down and then released. The distance from the rest position at time 0 is 10 cm . The amplitude is 10 cm and the period is 6 seconds. Write an equation for the distance of the object from its rest position after t seconds.

b) A buoy is at rest at time 0 . Then it begins to bob up and down, with a maximum displacement of 11 inches. The time to complete one cycle is 1.5 seconds. Write an equation for the simple harmonic motion of the buoy, assuming at time 0 that the buoy is on its way down from equilibrium.

Day 4.6 - Graphing $\csc (x) \& 5 \sec (x)$

Objectives: SWBAT graph $\csc (x)$ and $\sec (x)$

Review Questions of the day:

1) State the period and phase shift of $y=-2 \cos 2\left(x+45^{\circ}\right)$.
2) State the domain and range of the above function.
3) Describe the transformation of the parabola $y=(2 x+3)^{2}+2$??
4) How will $y=\cos (3 x)$ compare with $y=\cos (x)$?

Graph each on the trig grid and state the amplitude, period, domain, and range. $y=\cos (2 x)$ and $y=\sec (2 x)$

A = \qquad
$\mathbf{P}=$ \qquad
D: \qquad
R: \qquad

GAP: \qquad

The GAP amount will help you find the max, min, and zeros quickly. Therefore, this helps you find the vertices of the parabolas and the vertical asymptotes. To find the GAP amount, always divide the period by \qquad for $\sec (x)$ and $\csc (x)$. From this example, we conclude the following:

1) The period of $y=A \sec (B x-C)$ is always \qquad . The value of \mathbf{B} represents the number of waves completed in a normal period of 2π. The phase shift is \qquad . Graph $\cos (x)$ first and touch and flip.
2) The period of $\boldsymbol{y}=\boldsymbol{A} \csc (\boldsymbol{B x}-\boldsymbol{C})$ is always \qquad . The value of \mathbf{B} represents the number of waves completed in a normal period of 2π. The phase shift is \qquad . Graph $\sin (x)$ first and touch and flip.
3) B >1 \qquad $0<B<1$ \qquad

Example 2: $y=\sin (.5 x)$ and $y=\csc (.5 x)$
$\mathbf{A}=$ \qquad
$\mathbf{P}=$ \qquad
D: \qquad

R: \qquad
GAP: \qquad

Example 3: $y=-2 \sec \left(\frac{\pi}{2} x\right)+1$
$\mathbf{P}=$ \qquad
D: \qquad

R: \qquad
GAP: \qquad

Example 4: $y=\csc \left(\frac{2}{3} x\right)$
$\mathbf{P}=$ \qquad
D: \qquad

R: \qquad

GAP: \qquad

Example 5: $y=-2 \sec 2\left(x-\frac{\pi}{4}\right)$
A = \qquad
$\mathbf{P}=$ \qquad

D: \qquad
R: \qquad
GAP: \qquad

Write an equation for each graph.

What is the graph of the blue and red lines below?

Objectives: SWBAT Graph $\cot (x)$ and $\tan (x)$ base graphs as well as graphs with phase shifts

Review Questions of the day:

1. Find the amplitude, period, and phase shift of $y=-2 \cos 2(x-\pi)$
2. What is $\csc \left(\frac{\pi}{4}\right)$?
3. If $\cos (x)=\frac{3}{5}$ and x is in Quadrant IV, find $\sin (x)$.

Graph the following using 2 different colors.

Example 1: $y=\tan (x)$ and $y=-\tan (x)$
$\mathbf{A}=$ \qquad
$\mathbf{P}=$ \qquad
D: \qquad
R: \qquad
GAP: \qquad

Example 2: $y=\cot (x)$ and $y=-\cot (x)$
$\mathbf{A}=$ \qquad
$\mathbf{P}=$ \qquad
D: \qquad
R: \qquad
GAP: \qquad
The Period for $\tan (x)$ and $\cot (x)$ is \qquad . This will also be the distance between the asymptotes.
The Range is always
The Domain can be found by selecting a Vertical Asymptote on the graph and adding the \qquad amount times n, where n is an integer ... keep in mind that the graphs of $\tan (x)$ and $\cot (x)$ do not have Amplitudes GAP amount will be the \qquad divided by \qquad . This is the amount from a vertical asymptote to the center of the graph.

$$
y=\tan (x) \quad y=\cot (x)
$$

Graph the following using 2 different colors.

Example 3: $y=2 \tan (x)$ and $y=2 \tan (x)+2$
$\mathbf{P}=$ \qquad
D = \qquad
R: \qquad
VS: \qquad
GAP: \qquad

Example 4: $y=-\cot (x-\pi)$
$\mathbf{P}=$ \qquad
D = \qquad
R: \qquad
PS: \qquad
GAP: \qquad
What is another equation of this graph?

Example 5: $y=\tan \left(x+\frac{\pi}{4}\right)$
$\mathbf{P}=$ \qquad
D = \qquad
R: \qquad
PS: \qquad
GAP: \qquad
What is another equation of this graph?

Example 6: $y=-2 \cot \left(x-\frac{\pi}{2}\right)-1$
$\mathbf{P}=$ \qquad
D = \qquad
R: \qquad
PS: \qquad
GAP: \qquad

VS: \qquad

Objectives: SWBAT Graph $\cot (x)$ and $\tan (x)$ with compressions and stretches

Review Questions of the day:

1) Find the amplitude, period, and phase shift of $y=-2 \sin 3(x-\pi)$
2) What is $\sec \left(\frac{\pi}{4}\right)$?
3) If $\cos (x)=\frac{12}{13}$ and x is in Quadrant IV, find $\sin (x)$.

Example 1: $y=\tan (2 x)$
$P=$ \qquad
$\mathbf{D}=$ \qquad
R: \qquad
GAP: \qquad
Lightly with pencil or in a light color, graph $y=\tan (x)$

Example 2: Graph $y=\cot (3 x)$ (Lightly with pencil or in a light color, graph $y=\cot (x)$
$\mathbf{P}=$ \qquad
D = \qquad

R: \qquad
GAP: \qquad

GUIDELINES:

Domain: $\boldsymbol{x} \neq$ V.A. + period n where n is an integer Use this for both $\tan (x)$ and $\cot (x)$. GAP amount will be the \qquad divided by \qquad . This is the amount from a vertical asymptote to the center of the graph. Use this for both $\tan (x)$ and $\cot (x)$.

Example 3: Graph $y=-\tan (.5 x)+1$
$\mathbf{P}=$ \qquad

D = \qquad
R: \qquad
VS: \qquad

GAP: \qquad

STEPS for Graphing when there is a phase shift and a compression or stretch

- Start at the phase shift
- Go the GAP amount (period/2) to get to a VA for $\tan (x)$ and to the "center" for $\cot (x)$
- Draw the increasing or decreasing function...look at coefficient and function to decide

REMEMBER THE PATTERNS AND SIMPLY MAKE THE TRANSFORMATIONS

$y=\tan (x) \quad$ (starts at center of snake then go to VA)
$y=\cot (x) \quad$ (starts at VA then go to center of snake)

Example 4: $y=-\cot (2 x-2 \pi)$
$\mathbf{P}=$ \qquad

D = \qquad
R: \qquad
VS: \qquad
GAP: \qquad

Another Equation for this graph?

Example 5: $y=\tan \frac{1}{2}\left(x+\frac{\pi}{4}\right)$
$\mathbf{P}=$ \qquad
D $=$ \qquad
R: \qquad
PS: \qquad
GAP: \qquad

Another Equation for this graph?

Example 6: $y=-\cot 4\left(x-\frac{\pi}{2}\right)$
$\mathbf{P}=$ \qquad
D = \qquad
R: \qquad
VS: \qquad
GAP: \qquad

Objectives: SWBAT Graph $\cot (x)$ and $\tan (x)$ with all Transformations

Review Questions of the day:

1) What is the period of $\cos (3 x)$?
2) What is the period of $\cot (4 x)$?

Graph each of the following and include the following information.

1) $y=\tan (2 x)+1$
$\mathbf{P}=$ \qquad
PS = \qquad
D: \qquad
R: \qquad

GAP: \qquad

2) $y=\cot .5(x+\pi)$
$\mathbf{P}=$ \qquad
PS = \qquad

D: \qquad

R: \qquad
GAP: \qquad
3) $y=\tan 2(x-\pi / 4)$
$\mathbf{P}=$ \qquad
PS = \qquad
D: \qquad
R: \qquad

GAP: \qquad

4) $y=-\cot .5\left(x-\frac{\pi}{4}\right)$
$\mathbf{P}=$ \qquad
PS = \qquad

D: \qquad
R: \qquad
GAP: \qquad

5) $y=-2 \cot (2 x+\pi)+1$
$\mathbf{P}=$ \qquad
$\mathbf{P S}=$ \qquad
D: \qquad
R: \qquad
GAP: \qquad

Given the following graphs below, write the equation, domain, and range for each.

6) Equation: \qquad
D: \qquad R: \qquad
7) Equation: \qquad
D: \qquad R: \qquad

Given the following graphs below, write the equation, domain, and range for each.

8) Equation:

D: \qquad R: \qquad

10) Equation: \qquad
D: \qquad R: \qquad

9) Equation: \qquad
D: \qquad R:
\qquad

11) Equation: \qquad
D: \qquad R: \qquad

Objectives: SWBAT Find the value of inverse trig functions, both without and with a calculator. Sketch inverse trig functions. State the domain and range of inverse trig functions.

Review Questions of the day:

1) What is the range for the graph of $y=-7 \cos (x)$?
2) What is the range for the graph of $y=2 \csc (x)$?
3) If $\tan (A)=\frac{3}{7}$, what are the possible values of angle A within [0,360 ${ }^{\circ}$?
4) From Algebra, what are the 2 steps we take to find an inverse?

Let's use these to find the inverse of $y=x^{2}$ and sketch their graphs in the same $x-y$ plane.

$y=x^{2}$	
\boldsymbol{x}	\boldsymbol{y}

Is this inverse a function?

Vertical Line Test:

Horizontal Line Test:

Why does the calculator only give us 5 when we type in $\sqrt{25}$ when $(-5)^{2}$ also equals 25 ?

Trig Inverses work in the same exact way. An inverse of a trig function is NOT a function unless we restrict its domain. When we restrict their domain, the values are called \qquad values.

Consider the base graphs for $\cos (x), \sin (x)$, and $\tan (x)$. Sketch them here:

For what x values does $y=1$?

For what x values does $y=\frac{-1}{2}$?

For which x values does $y=1$?

For what x values does $y=\frac{-1}{2}$?

Discovering principal values for cosine...

Evaluate each by using your calculator. Get in degree mode so it is easier for you to recognize the angles.

Ex. $1 \cos ^{-1}\left(\frac{1}{2}\right)$
Ex. $2 \cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)$
Ex. $3 \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$

Ex. $4 \cos ^{-1}\left(-\frac{2}{3}\right)$
Ex. $5 \cos ^{-1}\left(-\frac{3}{4}\right)$
Ex. $6 \cos ^{-1}\left(-\frac{7}{8}\right)$

So for cosines, the principal values are in Quadrants \qquad or \qquad .

PRINCIPAL VALUES FOR $y=\cos (x)$
Quadrants \qquad or \qquad .

Repeat for sine.

Ex. $7 \sin ^{-1}\left(\frac{1}{2}\right)$
Ex. $8 \sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)$
Ex. $9 \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$

Ex. $10 \sin ^{-1}\left(-\frac{2}{3}\right)$
Ex. $11 \sin ^{-1}\left(-\frac{3}{4}\right)$
Ex. $12 \sin ^{-1}\left(-\frac{7}{8}\right)$

So for sine, the principal values are in Quadrants \qquad or \qquad .

PRINCIPAL VALUES FOR $y=\sin (x)$
\square

Now investigate tangent.
Ex. $\left.13 \tan ^{-1}(1)\right) \quad$ Ex. $14 \tan ^{-1}\left(\frac{\sqrt{3}}{3}\right) \quad$ Ex. $15 \tan ^{-1}(-\sqrt{3}) \quad$ Ex. $16 \tan ^{-1}(-2)$

So for tangent, the principal values are in Quadrants \qquad or \qquad PRINCIPAL VALUES FOR $y=\tan (x)$

Why does the interval need to be open for $\tan (x)$?

Graph	Function	Inverse	Principal Values
Sin			
Cos			
Tan			

Label each one as $y=\sin ^{-1}(x), y=\cos ^{-1}(x)$, or $y=\tan ^{-1}(x)$ and write the domain and range for each.

$\mathrm{y}=$ \qquad
Domain:

Range:

$\mathrm{y}=$ \qquad
Domain:

Range:

$y=$ \qquad
Domain:
Range:

Calculator Examples: Round degree measures to the nearest minute.
$\csc ^{-1}(7)$
$\sec ^{-1}(3)$
$\cot ^{-1}(-2.4)$

Explain why $\boldsymbol{\operatorname { c o s }}^{-\mathbf{1}}(-\mathbf{9})$ doesn't work:

Objectives: SWBAT use inverse trig functions to find principal values. Know the principal values for each trig function. Use Pythagorean Theorem to find specific trig ratios.

Review Questions of the day:

1) When $\cot (x)=0$, what is $\cos (x)$?
2) When $\sin (x)=\frac{\sqrt{2}}{2}$, then $\cos (x)=$ \qquad or \qquad .
3) When $\tan (x)=1$ then $\sin (x)=$ \qquad or \qquad .

Principal Values

Sine

Degrees: \qquad

Radians: \qquad

Cosine

Degrees: \qquad

Radians: \qquad

Degrees: \qquad

Radians: \qquad

Find the value of each.

Ex. $1 \cos \left[\sin ^{-1}(1)\right]$
Ex. $2 \sin \left[\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)\right]$

Ex. $3 \tan \left[\csc ^{-1}(2)\right]$
Ex. $4 \cos \left[\sin ^{-1}\left(-\frac{1}{2}\right)\right]$

Ex. $6 \sin \left[\sin ^{-1}(-1)\right]$

Ex. $8 \cos ^{-1}\left[\cos \left(\frac{7 \pi}{6}\right)\right]$

Ex. $10 \sin ^{-1}\left[\sin \left(\frac{7 \pi}{4}\right)\right]$

When will $\cos ^{-1}[\cos (x)]=x$? \qquad
When will $\sin ^{-1}[\sin (x)]=x$?
When will $\tan ^{-1}[\tan (x)]=x$?

Other way...
$\sin ^{-1}[\sin (y)]=$ \qquad $\cos ^{-1}[\cos (y)]=$ \qquad $\tan ^{-1}[\tan (y)]=$ \qquad

Find the exact value of each without using a calculator. Use $x^{2}+y^{2}=$ \qquad
Ex. $11 \cos \left[\sin ^{-1}\left(\frac{4}{5}\right)\right]$
Ex. $12 \sin \left[\cos ^{-1}\left(\frac{-12}{13}\right)\right]$

Ex. $13 \tan \left[\csc ^{-1}(-3)\right]$
Ex. $14 \csc \left[\sin ^{-1}\left(\frac{-1}{5}\right)\right]$

Check each of the above on your calculator.

Inverses

Objectives: SWBAT rewrite trig expressions using SOH-CAH-TOA and $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$. Discuss the domain and range of inverse trig graphs. Use inverse trig functions..

Review Questions of the day:

1) Find $\cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(\frac{1}{2}\right)$
2) Find $\cos \left[\sin ^{-1}(1)\right]+\cos (0)$
3) If $\tan (x)=-1$ then $\sec (x)=$ \qquad or \qquad .
4) Explain what $\mathrm{SOH}-\mathrm{CAH}-\mathrm{TOA}$ means.

Write each expression as an algebraic expression of \boldsymbol{x}. Assume \boldsymbol{x} is positive.

Ex. $1 \sin \left[\cos ^{-1}(x)\right]$

Ex. $2 \csc \left[\sin ^{-1}\left(\frac{x}{3}\right)\right]$

Ex. $3 \sin \left[\cos ^{-1}(3 x)\right]$

Ex. $4 \cos \left[\tan ^{-1}(x)\right]$

Domain or Input:

Vertical Line Test:

Range or Output:

Horizontal Line Test:
Graph

Label each one as either $y=\sin ^{-1}(x), y=\cos ^{-1}(x)$, or $y=\tan ^{-1}(x)$. Then write the domain and range for each.

$y=$ \qquad
Domain: \qquad
Range: \qquad

$y=$ \qquad
Domain: \qquad
Range: \qquad

$y=$ \qquad
Domain: \qquad
Range: \qquad

When working with compositional trig functions, always start with the and then work \qquad .

Find the domain and range of each trig expression by using the above inverse graphs as a guide.
Ex. $5 y=\cos \left[\sin ^{-1}(x)\right]$
Ex. $6 y=\sin \left[\cos ^{-1}(x)\right]$
Ex. $7 y=\tan \left[\tan ^{-1}(x)\right]$

Domain: \qquad Domain: \qquad Domain: \qquad

Range: \qquad Range: \qquad _

Range: \qquad

Simplify each trig expression. Do NOT use a calculator.
Ex. $8 \sin (0)+\cos ^{-1}(1)+2 \tan (0)-\cos ^{-1}\left(\frac{1}{2}\right)$

Ex. $\left.9 \cos \left[\tan ^{-1}\left(\frac{8}{7}\right)\right]\right)$)

