PreCalculus with TRIG - Unit 5 - Trig Identities and Proofs

Day 1 - Section 5.1 - Trig Identities - Strategies Part I

Objectives: SWBAT Use trig identities in order to simply expressions and prove identities.

Review Questions of the day:

- 1) Find the phase shift of $y = 4\cos\left(2x \frac{\pi}{4}\right)$. 2) What is the minimum value of $y = 7\sin(4x) 9$?
- 3) What is tan(x) in terms of sin(x) and cos(x)?
- 4) Factor completely: $2x^4 512$

	Review of Trig Identities from Unit 3					
Recip	rocal	Pythagorean	Cofun	ctions	Ratio Id	entities
$sin(\theta) =$		Main Pythagorean	$sin(\theta) =$			
$cos(\theta) =$			$cos(\theta) =$		$tan(\theta) =$	
$tan(\theta) =$		Tangent Corollary	$tan(\theta) =$			
$csc(\theta) =$			$csc(\theta) =$			
$sec(\theta) =$		Cotangent Corollary	$sec(\theta) =$		$cot(\theta) =$	
$cot(\theta) =$			$cot(\theta) =$			

Simplify each of the following expressions using trig identities.

1)
$$16cot(x)tan(x)$$

2)
$$2csc(x)sin(x)cos(x)$$

a)
$$\frac{7tan(x)}{cot(x)}$$

3)
$$13sin^2(x) + 13cos^2(x)$$

5)
$$csc(x)sin(x)cos(x)sec(x) + 9$$

b)
$$\frac{\sin^4(x)}{\sin^2(x)}$$

Trig Identities/ Proofs

An Identity is any equation that van be "proven" true. A trig identity involves at least one of the six trig functions. We can prove an identity by using several strategies.

STRATEGY 1: Change everything to cos(x) and sin(x).

6) $7\tan(x)\sec(x)\cot(x)\cos(x)\sin(x)\csc(x) = 7$ **c**) $3\tan(x)\cos(x)\cot(x)\sec(x)\sin^2(x)\csc^2(x) = 3$

STRATEGY 2: Factor and simplify.

7)
$$sin^4(x) - cos^4(x) = sin^2(x) - cos^2(x)$$

8)
$$sec(x) cos^2(x) - sec(x) = -tan(x) sin(x)$$

STRATEGY 3: Split up one fraction.

9)
$$\frac{1+\cos(x)}{\sin(x)} = \csc(x) + \cot(x)$$

d)
$$2 \sec(x) + \tan(x) = \frac{2 + \sin(x)}{\cos(x)}$$

STARETEGY 4: Combining Fractions.

10)
$$\frac{\cos(x)}{\sin(x)} + \frac{\sin(x)}{\cos(x)} = \csc(x)\sec(x)$$

e)
$$\cot(x) + \tan(x) = \frac{1}{\sin(x)\cos(x)}$$

Day 2 - Section 5.1A - Trig Identities - Strategies Part II

Objectives: SWBAT Use trig identities in order to simply expressions and prove identities.

Review Questions of the day:

1) Simplify $114\cos(x) + 114\sin^2(x)$

2) State the domain of y = tan(x).

3) Simplify $\frac{4}{3+\sqrt{2}}$

STRATEGY 5: Get the same denominator and combine terms as one fraction.

1)
$$\frac{\cos(x)}{1-\sin(x)} + \frac{1-\sin(x)}{\cos(x)} = 2\sec(x)$$

$$\mathbf{a})\cot(x) + \frac{\sin(x)}{1+\cos(x)} = \csc(x)$$

Strategy 6: Use a conjugate. Multiply one side of the equation by conjugate/conjugate.

$$2) \frac{\sec(x)+1}{\tan(x)} = \frac{\tan(x)}{\sec(x)-1}$$

$$\mathbf{b}) \ \frac{1-\cos(\mathbf{x})}{\sin(\mathbf{x})} = \frac{\sin(\mathbf{x})}{1+\cos(\mathbf{x})}$$

STRATEGY 7: Look for the other Pythagorean identities and make a substitution.

$$tan^{2}(x) + 1 = sec^{2}(x)$$
 or $cot^{2}(x) + 1 = csc^{2}(x)$

$$cot^2(x) + 1 = csc^2(x)$$

3)
$$(tan^2(x) + 1)(cos^2(x) + 1) = tan^2(x) + 2$$

Prove each identity by the method of your choice.

4)
$$1 - cos(x) = \frac{csc(x) - cot(x)}{csc(x)}$$

5)
$$(\sec(x) - \tan(x))^2 = \frac{1-\sin(x)}{1+\sin(x)}$$

<u>Day 3 - Section 5.1B - Trig Identities - Apply All 7 Strategies</u>

Objectives: SWBAT Use trig identities to simply expressions and prove identities.

Write down all 7 strategies to try for Trig Proofs

- 1. Change everything to cos(x) and sin(x).
- 2. Factor and simplify.
- 3. Split up one fraction.
- 4. Combining Fractions.
- 5. Get the same denominator and combine terms as one fraction.
- 6. Use a conjugate. Multiply one side of the equation by conjugate/conjugate.
- 7. Look for the other Pythagorean identities and make a substitution.

Verify Each Identity.

$$1) 1 - cscx = \frac{tanx - secx}{tanx}$$

2)
$$tan^2x + 2 = sec^2x + 1$$

3)
$$(\cos x - \sin x)^2 + (\cos x + \sin x)^2 = 2$$

4)
$$\frac{cscx}{1-cscx} = \frac{1}{sinx-1}$$

5)
$$tanx - cosx = tanxsinx + tanx - secx$$

$$6) \frac{\sin x}{1-\cot x} - \frac{\cos x}{\tan x - 1} = \sin x + \cos x$$

U Substitution

7)
$$cot x + \frac{sin x}{1 + cos x} = csc x$$

8)
$$\frac{\tan(2\beta) + \cot(2\beta)}{\sec(2\beta)} = \csc(2\beta)$$

9)
$$\frac{\tan(x)\cos(y)}{\sin(x)\cot(y)} = \frac{\sin(y)}{\cos(x)}$$

Day 4 - Section 5.2 - Sum and Difference Formulas - Part I

Objectives: SWBAT Use sum and difference formulas for find exact values of Trig **Functions**

Review Questions of the day:

- 1) What is the period for y = tan(x)? 2) What is cot(2x) for x = 0? 3) What is $cos2(\beta) + sin2(\beta)$?

	Sum and Difference Formulas			
Conina	Sum			
Cosine	Difference			
Sino	Sum			
Sine	Difference			
Tangent	Sum			
	Difference			

Write the following in terms of 30°, 45°, 60°, or 90°

1) 15°

2) 105°

a) -15°

Write the following in terms of $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, or $\frac{\pi}{2}$

3) $\frac{\pi}{12}$

b) $-\frac{\pi}{12}$

Find the exact value for each.

5) $cos(15^{\circ}) = cos(60^{\circ} - 45^{\circ})$

6)
$$sin(-15^{\circ}) = sin($$

$$\mathbf{c}) \quad \cos\left(\frac{7\pi}{12}\right) = \cos($$

8)
$$tan\left(-\frac{\pi}{12}\right) = tan($$

10)
$$cos(40^{\circ})cos(20^{\circ}) - sin(40^{\circ})sin(20^{\circ})$$

11)
$$\frac{tan(20^{\circ})+tan(25^{\circ})}{1-tan(20^{\circ})tan(25^{\circ})}$$

12)
$$tan\left(\frac{11\pi}{12}\right) = tan\left(\frac{2\pi}{3} + \right)$$

Prove the following:

13)
$$cos\left(x-\frac{\pi}{2}\right)=sin(x)$$

$$14) \ tan(\pi - x) = -tan(x)$$

d)
$$sin(\alpha + \beta) + sin(\alpha - \beta) = 2sin(\alpha)cos(\beta)$$

15)
$$\frac{\sin(\alpha+\beta)}{\cos(\alpha)\cos(\beta)} = \tan(\alpha) + \tan(\beta)$$

<u>Day 5 - Section - Section 5.2A - Sum and Difference Formulas</u> <u>- Adding Separate Trig Functions Together</u>

Objectives: SWBAT Use sum and difference to evaluate expressions when given trig ratios, instead of angles.

Review Questions of the day:

1)
$$\frac{\frac{1}{2}}{\frac{3}{4}}$$

2)
$$\frac{\frac{1}{2}}{\frac{3}{4}}$$

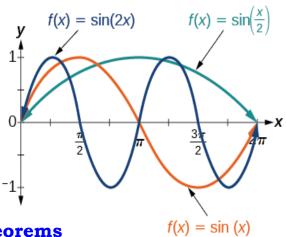
a)
$$\frac{-\frac{8}{3}}{\frac{7}{9}}$$

For 1 - 3, evaluate each of the following:

Given sin with bo	$n(x) = \frac{12}{13} \text{ and } cc$ th x and y in Qua	$os(y) = \frac{3}{5}$ adrant I.	<u>x</u>	<u> </u>
sin(x)	cos(x)	tan(x)		
sin(y)	cos(y)	tan(y)	<	→
sin	(x+y)		cos(x+y)	tan(x+y)

	= -4/5 and seQuad III and y in		<u>x</u>	<u>y</u>
sin(x)	cos(x)	tan(x)	1 1	Ţ
sin(y)	cos(y)	tan(y)	<	→
			\	
sin	(x+y)		cos(x+y)	tan(x+y)

You try....

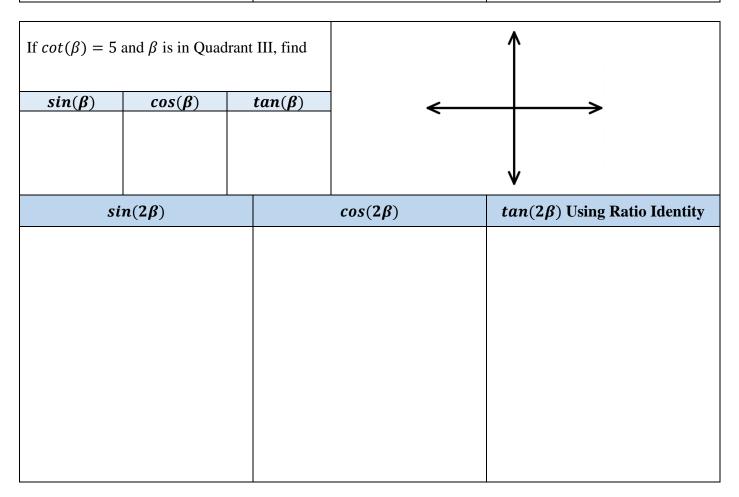

Given $sin(x) = -4/5$ and $sec(y) = 13/5$ with x in Quad III and y in Quad IV.		<u>x</u>	<u>y</u>	
sin(x)	cos(x)	tan(x)		
sin(y)	cos(y)	tan(y)		
sin	(x+y)		cos(x + y)	tan(x+y)

<u>Day 6 - Section - Section 5.3 - Double Angle Formulas</u>

Objectives: SWBAT Use Double Angle Formulas

Double Angle

x vs 2x



Deriving Formulas from Trig Sum Theorems

$$sin(2x) = cos(2x) =$$

Sine	Tangent	Cosine
		1
	Tangent Ratio Identity Rule	2
		3

If $sin(A) =$	4/5 and A is in find	Quadrant II,		
sin(A)	cos(A)	tan(A)	←	→
si	n(2A)		cos(2A)	tan(2A) Using Tangent Rule

	-4/7 and θ is in lowing and check calculator.			
$sin(\theta)$	$cos(\theta)$	$tan(\theta)$	←	→
si	$n(2\theta)$		$cos(2\theta)$	$tan(2\theta)$ – Your choice in method

Calculator Check

Rewrite each expression as the Double Angle of sine, cosine, or tangent (respectively) and then find the **EXACT value.**

4)
$$2\cos^2\left(\frac{\pi}{12}\right) - 1$$

b)
$$cos^2\left(\frac{\pi}{8}\right)sin^2\left(\frac{\pi}{8}\right)$$

$$5) \frac{2tan\left(-\frac{\pi}{12}\right)}{1-tan\left(-\frac{\pi}{12}\right)}$$

6)
$$1 - 2sin^2(4x)$$

Verify each Double Angle Identity.

7)
$$sin(2x) - tan(x) = tan(x)cos(2x)$$
 8) $(sin(x) + cos(x))^2 = 1 + sin(2x)$

8)
$$(\sin(x) + \cos(x))^2 = 1 + \sin(2x)$$

9)
$$\cot(x) = \frac{\sin(2x)}{1-\cos(2x)}$$

<u>Day 7 - Section - Section 5.3A - Half Angle Theorems</u> <u>Introduction</u>

Objectives: SWBAT Use Half Angle Theorems to evaluate expressions

Review Questions of the day:

Using Half-Angle Formulas:

Sine	Cosine		Tangent
		1	
		2	
		3	
± Meaning			
$\frac{\alpha}{2}$ Meaning			

Find the exact value of each by using a half angle formula.

1)
$$cos(15^\circ) = cos\left(\frac{30^\circ}{2}\right)$$

Formula Used	Quadrant I will end in	Sign of the trig function in that Quadrant	Work
Cal	culator Che	ek	

 $2) \sin(75) = \sin\left(----\right)$

Formula	Quadrant I will end in	Sign of the trig function in that Quadrant	Work
Calculator Check			

a) $tan\left(\frac{\pi}{12}\right)$

Formula	Quadrant I will end in	Sign of the trig function in that Quadrant	Work
Cal	culator Chec	ek	

4) $cos\left(\frac{-3\pi}{8}\right)$

Formula	Quadrant I will end in	Sign of the trig function in that Quadrant	Work
Cal	culator Che	ck	

Day 8 - Section - Section 5.3B - Half Angle Theorems - Part II

Objectives: SWBAT Use Half Angle Theorems to evaluate expressions when given trig ratios, instead of angles.

"No Angle Given" Problems

	x interval on Unit Circle	$\left(\frac{x}{2}\right)$ will be in interval	Then $\left(\frac{x}{2}\right)$ will exist in Quadrant
Quad I			
Quad II			
Quad III			
Quad IV			

Therefore, if x is in Quadrant I or II then $\left(\frac{x}{2}\right)$ will be in _____. If x is in Quadrant III or IV then $\left(\frac{x}{2}\right)$ will be in _____. This is true for all angles between 0 and 2π .

Given $cos(A) = 12/13$ and A is in Quadrant I, find the following				^		
sin(A)	cos(A)	tan(A)				
				V	>	
$sin\left(\frac{A}{2}\right)$	Is Half Ang Pos / Neg ?		Is Half Angle Pos / Neg ?	tan	$\left(\frac{A}{2}\right)$	Is Half Angle Pos / Neg ?
				Half Angle Rule		
				Ratio Identity		

	Given $sin(\theta) = -7/25$ and θ is in Quadrant III, find the following.				1		
$sin(\theta)$	$cos(\theta)$	$tan(\theta)$					
				←		→	
$sin\left(\frac{\theta}{2}\right)$	Is Half Ang Pos / Neg ?			Is Half Angle Pos / Neg ?	tan	$\left(\frac{\theta}{2}\right)$	Is Half Angle Pos / Neg ?
					Half Angle Rule		
					Ratio Identity		

You Try...

Given that <i>cot</i> (IV, find the fol	(a) = -3 and a lowing	is in Quadrant		↑		
$sin(\theta)$	$cos(\theta)$	$tan(\theta)$				
			←	V	→	
$sin\left(\frac{\theta}{2}\right)$	Is Half Ang Pos / Neg S		Is Half Angle Pos / Neg ?	tan	$\left(\frac{\theta}{2}\right)$	Is Half Angle Pos / Neg ?
				Half Angle Rule		
				Ratio Identity		

Day 9 - Section - Section 5.3C - Power Reducing

Objectives: SWBAT Use Half Angle Theorems to evaluate expressions when given trig ratios, instead of angles.

In order to derive these formulas, use cos(2x) formulas and solve for $sin^2(x)$ and $cos^2(x)$...

$$cos(2x) = 1 - 2sin^2(x)$$

$$cos(2x) = 2cos^2(x) - 1$$

$$cos(2x) = 2cos^{2}(x) - 1$$

$$tan^{2}(x) = \frac{sin^{2}(x)}{cos^{2}(x)}$$

Power Reducing Formulas							
Sine	Cosine	Tangent					

Power Reducing Formulas are used in calculus to explore the rate of change over time. It is a way of rewriting a trig expression so that the power is smaller therefore - reducing the power.

1) Write an equivalent expression for sin^2x that does not contain a power of a trig function greater than one.

Rewrite with Formula	Distribute	Rewrite as individual Fraction Terms	Simplify

Do you have any powers greater than one? Keep Going....

2)	٠.	in	4	~
2	S	ι'n		х

Rewrite with Formula	Distribute	Rewrite as individual Fraction Terms	Simplify				
Do you have any powers greater than one? Keep Going							

3) $8\cos^4(x)$ HINT: Pretend this is a $\cos^4(x)$ and distribute the 8 at the end

Distribute	Rewrite as individual Fraction Terms	Simplify
Oo you have any powers great	er than one? Keep G	oing
		Distribute individual Fraction

3) $4sin^2(x)cos^2(x)$

a) $\frac{2}{3}sin^4(\theta)$

Trig Identities Wrap-Up Sheet

Reci	procal	Cofu	nctions	Even	- Odd	Que	otient	Pythagorean
$sin(\theta)$		$sin(\theta)$		$sin(-\theta)$				
$cos(\theta)$		$cos(\theta)$		$cos(-\theta)$		$tan(\theta)$		
$tan(\theta)$		$tan(\theta)$		$tan(-\theta)$				
$csc(\theta)$		$csc(\theta)$		$csc(-\theta)$				
$sec(\theta)$		$sec(\theta)$		$sec(-\theta)$		$cot(\theta)$		
$cot(\theta)$		$cot(\theta)$		$cot(-\theta)$				

Sine								
Sum	Difference	Double Angle	Half Angle	Power Reduce				

Cosine						
Sum	Difference	Double Angle	Half Angle	Power Reduce		
		1				
		2				
		3				

Tangent						
Sum	Difference	Double Angle	Half Angle	Power Reduce		
			1			
			2			
			3			
In terms of sin/cos						
				!		