Precalculus with TRIG - Unit 8 - Polar

Day 1 - Section 6.3 - Introduction to Polar Coordinates

Objectives: SWBAT Plot polar points and develop the conversions between polar and rectangular coordinates

Review Questions of the Day:

1) What is the period for $y=\sin x$? For $y=\cot x$?
2) What is the expansion of $\cos (x+y)$?
3) What needs to happen in order to have two triangles when given (SSA) SOAS?

Rectangular Coordinates:

Ordered pairs (x, y) tell us how far to go horizontally and vertically from the origin.

Polar Coordinates:

Ordered pairs are given in terms of a radius (distance from the origin) and an angle (measured in degrees or radians) from the positive x-axis. These pairs are written as $(\boldsymbol{r}, \boldsymbol{\theta})$. The plane on which the points are graphed is called the Polar Plane and the origin is called the pole. The polar axis is the horizontal ray that extends to the right.

Graph each point on each polar grid/plane.

1) $A=\left(3, \frac{\pi}{6}\right)$
2) $B=\left(6, \frac{\pi}{4}\right)$
3) $C=\left(-2, \frac{\pi}{4}\right)$
a) $D=\left(-4, \frac{\pi}{4}\right)$
b) $E=\left(-5, \frac{\pi}{3}\right)$

4) Write the point $F=(0,7)$ (rectangular form) at least two different polar ways within one revolution
\qquad
\qquad
\qquad
\qquad

Graph each point on each polar grid/plane. Also tell three other ways to write the point within one revolution. Then give another point for which $r>0$ and $2 \pi<\theta<4 \pi$

3 other ways: \qquad
Another point: \qquad
7) $\left(7, \frac{2 \pi}{3}\right)$

3 other ways: \qquad
Another point: \qquad
8) $\left(1,-30^{\circ}\right)$

3 other ways: \qquad
Another point: \qquad
c) $\left(-6, \frac{-2 \pi}{3}\right)$

3 other ways: \qquad
Another point: \qquad

Conversions:

Each point in rectangular form can be converted into polar form and vice versa.

Changing from Polar to Rectangular:
 Changing from Rectangular to Polar:

\qquad $r=$ \qquad
$y=$ \qquad

$$
\theta=
$$

Day 2 - Section 6.3A - Conversation of Polar Points

Objectives: SWBAT Convert from polar to rectangular coordinates and then rectangular to polar coordinates.

Review Questions of the Day:

1) Write the point $\left(4,60^{\circ}\right)$ three other ways within one revolution.
2) How many triangles if $A=56^{\circ}, C=89^{\circ}, b=19$? 3) How many triangles if $a=7, b=7$, and $c=14$?
3) What is the principal Values for Tangent?
4) What is the $\cos \left(-\frac{\pi}{6}\right) ? \sin \left(-\frac{\pi}{6}\right)$?

Changing from Polar to Rectangular: Changing from Rectangular to Polar:

Make sure that your calculator is in \qquad mode when using radians and \qquad when you have degrees.

Change each point in polar form to rectangular form (coordinates).

1) $\left(6, \frac{\pi}{4}\right)$
2) $\left(-14,-\frac{\pi}{6}\right)$
a) $\left(0, \frac{\pi}{3}\right)$
3) $(4,1.2)$
4) $\left(22,67^{\circ}\right)$
b) $\left(-2.3,-178^{\circ}\right)$

Changing from Rectangular to Polar:

Sor $=$ \qquad and $=$ \qquad but add \qquad when the point is in
\qquad or \qquad
Draw a picture so you know what quadrant the point should be in and stay in.
Change each point in rectangular form to polar form (coordinates).
5) $(2,2)$
6) $(-4,-4)$
7) $(0,7)$
8) $(4,-7)$
c) $(-3,-4)$
d) $(-8,0)$

Day 3 - Section 6.3B - Converting Equations to Polar and Rectangular Forms

Objectives: SWBAT Convert equations from Polar form to Rectangular Form and visa versa.

Review Questions of the Day:

1) What is $\csc (0)$?
2) How many triangles are possible if $A=75^{\circ}, B=34^{\circ}$, and $c=14.5$?
3) Write the point $(1,1)$ four different ways in polar form.
4) Simplify $4 \sin ^{2}(x)+4 \cos ^{2}(x)$

Rectangular to Polar:

$x^{2}+y^{2}=$ \qquad
$\theta=\tan ^{-1}(\square)$ Add \qquad when θ is in
Quad \qquad or \qquad

Polar to Rectangular:

$x=$ \qquad $y=$ \qquad
Continue to use these above formulas for today, only use them in equations to change the form of the equations.

Writing Equations Steps:

- Rewrite any x as \qquad and any y as \qquad .
- Solve for \qquad
- Simplify the expression

Equation	Linear		Circle	
Rectangular	$y=$ constant $x=\operatorname{constant}$	$y=m x$	$y=m x+b$	$x^{2}+y^{2}=r^{2}$
Polar	$r=\frac{a}{\sin \theta}$ or $r=\csc \theta$			
$r=\frac{a}{\cos \theta}$ or $r=\sec \theta$	$\theta=\ldots$	$r=\ldots$	$r= \pm a$ $r=\operatorname{asin}(\theta)$ $r=\operatorname{acos}(\theta)$	

1) $y=2$
2) $x=3$
a) $y=4$
3) $x^{2}+y^{2}=25$
4) $4 x^{2}+4 y^{2}=16$
b) $x^{2}+y^{2}=7$
5) $y=x$
6) $y=2 x$
c) $y=\frac{x}{2}$
7) $y=3 x-1$
d) $y=2 x-1$
8) $x^{2}+2 x+y^{2}=4 y$

Change each from polar to rectangular form. Your answer should have no r's and no $\boldsymbol{\theta}$'s.
8) $r=5$
e) $r=-7$
9) $r=2 \cos \theta$
f) $r=3 \sin \theta$
10) $r=5 \csc \theta$
g) $r=\sec \theta$
11) $r^{2}=12 r \cos \theta$
12) $\theta=45^{\circ}$

When given a line that goes through the pole, the slope will always be _ so the rectangular form will always be \qquad .
12) $\theta=86^{\circ}$
13) $r^{2}=r \cos (\theta)+r \sin (\theta)$
15) $r=\frac{2}{1+\cos (\theta)}$

Day 4 - Section 6.4 - Graphing Cardioid, Limacons, Circles, and Lines

Objectives: SWBAT Graph Equations in Polar Form: Circles, Lines, Cardioids, and Limacons.

Review Questions of the Day:

1) Convert $(-3,-4)$ to polar (use degrees)
2) What are the principle values for sine?
3) What is $\cos \left(\frac{\pi}{3}\right), \cos \left(-\frac{\pi}{3}\right), \sin \left(\frac{\pi}{3}\right), \sin \left(-\frac{\pi}{3}\right)$?
4) What are the principal values for cosine?

Lines:

- $\theta=$ angle.

Graph the following lines in polar form.

1) $\theta=\frac{\pi}{6}, \quad \theta=\frac{-2 \pi}{4}$

a) $\theta=\frac{3 \pi}{4}, \quad \theta=\frac{-\pi}{4}$

Circles:

- $\boldsymbol{r}=\boldsymbol{m}$ and where m is the radius of a circle with center $(0,0)$
- $\boldsymbol{r}=\boldsymbol{d} \boldsymbol{\operatorname { c o s }}(\boldsymbol{\theta})$ or $\boldsymbol{r}=\boldsymbol{d} \boldsymbol{\operatorname { s i n }}(\boldsymbol{\theta})$ where d is the diameter of a circle tangent to the pole.
- When graphing using a table, you need to use your principle values for sine and cosine.

Graph the following circles in polar form.
2) $r= \pm 6$

b) $r= \pm 4$

Graph each line or circle on the polar grid.

1) $r=4 \cos (\theta)$ and $r=-4 \cos (\theta)$

θ		r
0		
$\frac{\pi}{6}$		
$\frac{\pi}{4}$		
$\frac{\pi}{3}$		
$\frac{\pi}{2}$		
$\frac{2 \pi}{3}$		
$\frac{3 \pi}{4}$		
$\frac{5 \pi}{6}$		
π		

2) $r=5 \sin (\theta)$ and $r=-5 \sin (\theta)$

θ		r
$\frac{\pi}{2}$		
$\frac{\pi}{3}$		
$\frac{\pi}{4}$		
$\frac{\pi}{6}$		
0		
$\frac{11 \pi}{6}$		
$\frac{7 \pi}{4}$		
$\frac{5 \pi}{3}$		
$\frac{3 \pi}{2}$		

Symmetry:

Since $\cos (x)=\cos (-x)$ then cosine is \qquad . Therefore, the graph will have (x axis in rectangular) symmetry. Since the principal values for Cosine exist in Quadrants \qquad and \qquad we will use angles in Quadrants \qquad and \qquad as plug-in values.

Likewise, since $\sin (-x)=-\sin (x)$ then sine is \qquad . Therefore the graph will have
\qquad symmetry. Since the principal values for sine exist in Quadrants \qquad \&
\qquad we will use angles in Quadrants \qquad and \qquad as plug-in values.

Cardioids:

- Graph of a rolling circle onto another circle of the same radius
- $r=m \pm m \cos \theta$ or $r=m \pm m \sin \theta$.
- Use your "easy" points based on the Principal Values of Sine and Cosine

○ Sine $\left\{\frac{3 \pi}{2}, \frac{11 \pi}{6}, 0, \frac{\pi}{6}, \frac{\pi}{2}\right\}$,

- Cosine $\left\{0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}, \pi\right\}$

- Cardioids always go through the pole.

https://en.wikipedia.org/wiki/Cardioid\#/media/File:Cardiod_animation.gif

- Cardioids can face in four direction based on the sign and trig function

Graph each cardioids on the polar grid.
5) $r=2-2 \cos \theta$
6) $r=3+3 \sin \theta$

$\boldsymbol{\theta}$		\boldsymbol{r}
$\mathbf{0}$		
$\frac{\pi}{3}$		
$\frac{\pi}{2}$		
$\frac{2 \pi}{3}$		
π		

Direction of Polar Turning Point based on Equation Type			
Cosine		Sine	
Cosine and Positive	Cosine and Negative	Sine and Positive	Sine and Negative
Right	Left	Up	Down

- Graph of a rolling circle onto another circle of the same radius however you values k and m are not equal
- $r=k \pm m \cos \theta$ or $r=k \pm m \sin \theta$
- Limacons follow the same directional rules as circles and cardioids with respect to sine and cosine.

Loop vs. Dimple Graph

- A loop occurs when $k<m$, which basically means when r can equal 0 .
- Limacons with a LOOP go through the pole and Limacons with a dimple go around the pole.

Direction of Polar Turning Point based on Equation Type			
Cosine		Sine	
Cosine and Positive	Cosine and Negative	Sine and Positive	Sine and Negative
Right	Left	Up	Down

Given the following equations, decide if the Limacons has a loop or not, and decide which direction the tip points.
7) $r=7+8 \cos \theta$
8) $r=2-\sin \theta$
c) $r=9-2 \cos \theta$
d) $r=11-15 \sin \theta$

Direction: \qquad
Loop or
Dimple \qquad

Direction: \qquad
Loop or. \qquad
Dimple:

Use five points for Limacons:

9) $r=2+\sin \theta$

θ		r
$\frac{3 \pi}{2}$		
$\frac{11 \pi}{6}$		
0		
$\frac{\pi}{6}$		
$\frac{\pi}{2}$		

Direction: \qquad Direction: \qquad
Loop or \qquad

Loop or.
Dimple
10) $r=2-3 \cos \theta$

$\boldsymbol{\theta}$		r
0		
$\frac{\pi}{3}$		
$\frac{\pi}{2}$		
$\frac{2 \pi}{3}$		
π		

Cardioid Shortcut:

Given the following equations, decide if the Limacons has a loop or not, and decide which direction the tip points.
10) $r=4-4 \cos \theta$

e) $r=2+2 \cos \theta$

11) $r=3+3 \sin \theta$

f) $r=5-5 \sin \theta$

Given the following equations, decide if the Limacons has a loop or not, and decide which direction the tip points.
12) $r=1-4 \cos \theta$

g) $r=4-1 \cos \theta$

13) $r=3+2 \sin \theta$

h) $r=1-5 \sin \theta$

Day 5 - Section 6.4A - Graphing Spirals and Cosine Roses

Objectives: SWBAT Graph Equations in Polar Form: Roses, Lemniscates, and Spirals

Review Questions of the Day:

1) Change $r=5$ to rectangular form.
2) Change $x=9$ to polar form.
3) The graph of $r=8 \cos (\theta)$ is a \qquad with \qquad $=8$, and points in
\qquad direction.

Label each as Line, Circle, Cardioid, or Limacon.

4) $r=7$
5) $r=4-4 \sin (\theta)$
6) $r=5+6 \cos (\theta)$
7) $\theta=\frac{\pi}{8}$
8) $r \cos (\theta)=9$
9) $r=1+\cos (\theta)$

Spirals:

- Spirals look like $r=m \theta$
- The sign of m determines where the spiral begins.
- The direction of a spiral is ALWAYS counterclockwise.

Graph each spiral on the same polar plane using two colors. Use a graphing calculator and the table to get decimal values to the nearest tenth.

1) $r=\theta$
2) $r=-2 \theta$

θ	r
0	
$\frac{\pi}{2}$	
π	
$\frac{3 \pi}{2}$	
2π	

θ	r
0	
$\frac{\pi}{2}$	
π	
$\frac{3 \pi}{2}$	
2π	

 number of petals.
a) $r=6 \sin (2 \theta)$
b) $r=6 \cos (3 \theta)$
c) $r=6 \sin (5 \theta)$
d) $r=6 \cos (4 \theta)$

Roses:

- Roses look like $r=m \sin (n \theta)$ or $r=m \cos (n \theta)$
- The length of each petal is m (pole to turning point)
- When n is odd.... There are n number of petals
- When n is even.... There are $2 n$ number of petals
- Cosine Roses will have horizontal symmetry so there is at least one petal along $\boldsymbol{\theta}=\mathbf{0}$ (Polar axis). Which means you start at the

\qquad , and then add $\frac{\pi}{n}$ if n is even, or $\frac{2 \pi}{n}$ if n is odd.

$$
\text { 3) } r=5 \cos (2 \theta)
$$

Odd or Even:	
Number of petals:	
Starting Spot:	
Distance Between Polar Turning Points:	
Asymptotes Starting Spot:	

4) $r=-6 \cos (3 \theta)$

Odd or Even:	
Number of petals:	
Starting Spot:	
Distance Between Polar Turning Points:	
Asymptotes Starting Spot:	

a) $r=5 \cos (4 \theta)$
b) $r=-3 \cos (5 \theta)$

Odd or Even:	
Number of petals:	
Starting Spot:	
Distance Between Polar Turning Points:	

Odd or Even:	
Number of petals:	
Starting Spot:	
Distance Between Polar Turning Points:	

Cosine Direction of the Roses

Day 6 - Section 6.4B - Graphing All Roses

Objectives: SWBAT Graph Equations in Polar Form: Roses, Lemniscates, and Spirals

Review Questions of the Day:

Label each as a Cardioid, Line, Circle, Limacon, Spiral, or Rose.

1) $r=19 \cos \theta$
2) $r=2+3 \sin \theta$
3) $r=5 \cos (5 \theta)$
4) $r \sin \theta=7$
5) $\theta=1$
6) $r=3-3 \cos \theta$
7) $r=2 \theta$
8) $r=2 \sec \theta$

Graphing Sine Roses:

Since a sine rose has vertical symmetry then you must find where the tip of the first petal begins. Since $\sin \left(\frac{\pi}{2}\right)=1$ then you must find where the angle $=\frac{\pi}{2}$ in order to figure out where you have a max or a min.

Where does $\sin \theta=1$?
Where does $\sin (2 \theta)=1$?

Where does $\operatorname{Sin}(3 \theta)=1$?

So $\sin (n \theta)=1$ at $\theta=$ \qquad . So a max or a min of a sine rose will occur at $\theta=$ \qquad . This is where you will have a tip of one petal always. Then the petals are spread evenly around the polar plane so add \qquad each time.

1) $r=5 \sin (2 \theta)$

Odd or Even:	
Number of petals:	
Starting Spot:	
Distance Between Polar	
Turning Points:	
Asymptotes Starting Spot:	

2) $r=4 \sin (3 \theta)$

Odd or Even:	
Number of petals:	
Starting Spot:	
Distance Between Polar	
Turning Points:	
Asymptotes Starting Spot:	

a) $r=5 \sin (4 \theta)$

Odd or Even:	
Number of petals:	
Starting Spot:	
Distance Between Polar	
Turning Points:	
Asymptotes Starting Spot:	

Lemniscates:

- A two petal rose
- $r^{2}=m^{2} \sin (2 \theta)$ or $r^{2}=m^{2} \cos (2 \theta)$
- Always two petals, and always 2θ
- Make sure you use a \pm in calculator

Graph the following.
3) $r^{2}=16 \sin (2 \theta)$

b) $r^{2}=25 \cos (2 \theta)$

Day 7 - Section 6.5 - Polar Form

Objectives: SWBAT Graph Equations in Polar Form: Roses, Lemniscates, and Spirals

Review Questions of the Day:

1) Change $r=\cos (\theta)$ to rectangular form?
2) Solve for all the values of $x \quad \cos (x)=\frac{1}{2}$
3) What does $i=, i^{2}=$

Imaginary Number:

Complex Number:

Complex Plane:

Absolute Value of a Complex Number:

Argument Complex Number:

Plot each of the following complex numbers in the complex plane, and find both its absolute value and argument.

1) $3+4 i$
2) $2-2 i$
3) $3 i$
a) $-2-4 i$

Polar Form of a Complex Number:

Write the following in polar form.
4) $3+3 i$
5) $-4-4 i$
b) $2-2 i$

Write the following in rectangular form.

6) $2(\cos (\pi)+i \sin (\pi))$
7) $4(\cos (2.4)+i \sin (2.4))$
c) $3\left(\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right)$

Products and Quotients of Complex Numbers in Polar Form:

Products:

Quotients:

Find the product and leave your answer in the desired form.
8) $z_{1}=6\left(\cos \left(35^{\circ}\right)+i \sin \left(35^{\circ}\right)\right), z_{2}=5\left(\cos \left(55^{\circ}\right)+i \sin \left(55^{\circ}\right)\right)$ Polar Form
9) $(6 \operatorname{cis}(\pi))\left(5 \operatorname{cis}\left(\frac{\pi}{4}\right)\right)$ Rectangular Form
d) $\left(4 \operatorname{cis}\left(17^{\circ}\right)\right)\left(3 \operatorname{cis}\left(25^{\circ}\right)\right)$ Polar Form
10) $(3-3 i)(2+2 i)$

Algebra	Polar

Find the quotient and leave your answer in the desired form.
12) $z_{1}=30\left(\cos \left(70^{\circ}\right)+i \sin \left(70^{\circ}\right)\right), z_{2}=5\left(\cos \left(25^{\circ}\right)+i \sin \left(25^{\circ}\right)\right)$ Polar Form
11) $\left(80 \operatorname{cis}\left(220^{\circ}\right)\right)\left(40 \operatorname{cis}\left(300^{\circ}\right)\right)$ Rectangular Form
e) $\left(18 \operatorname{cis}\left(\frac{\pi}{10}\right)\right)\left(2 \operatorname{cis}\left(\frac{\pi}{20}\right)\right)$ Rectangular

Do the following in using Algebra rules, and polar rules. Leave your answer in polar form.
12) $(2+2 i)(1+i)$

Algebra	Polar

Day 8 - Section 6.5A - Intro to DeMoivre's Theorem

Objectives: SWBAT use DeMoivre's Theorem and find the roots of complex numbers

Review Questions of the Day:

1) Solve for all values of $x \tan (x)=1$
2) Change $x=3$ to polar form.
3) The graph of $r=3+3 \cos (\theta)$ is a $\ldots \ldots$
4) Expand: $(3 x-5)^{3}$

Imaginary Number:

Complex Number:

Powers of a Complex Number in Polar:

$(r(\cos \theta+i \sin \theta))^{2}=$
$(r(\cos \theta+i \sin \theta))^{3}=$
$(r(\cos \theta+i \sin \theta))^{4}=$
$(r(\cos \theta+i \sin \theta))^{5}=$

1) $(1+i)^{8}$
2) $\left[2\left(\cos \left(\frac{\pi}{10}\right)+i \sin \left(\frac{\pi}{10}\right)\right)\right]^{5}$

Polar Form: \qquad
Rectangular Form: \qquad
a) $\left[3\left(\cos \left(100^{\circ}\right)+i \sin \left(100^{\circ}\right)\right)\right]^{3}$

Polar Form: \qquad
Rectangular Form: \qquad

Polar Form: \qquad
Rectangular Form: \qquad
b) $(1-i)^{10}$

Polar Form: \qquad

Rectangular Form: \qquad

DeMoivre's Theorem for Finding Complex Roots:

- All the Answers or Roots are equally spaced throughout the circle
- $Z_{\text {Primary Root }}=r\left[\cos \left(\frac{\theta}{n}\right)+i \sin \left(\frac{\theta}{n}\right)\right], \quad n=$ number of roots
- Find the Primary Root then use that to find the Roots of Unity

Complex Root:

Primary Root:

Roots of Unity:

Fundamental Rule of Algebra:

3) Find the complex cube root of $\left(8 \cos \left(135^{\circ}\right)+i \sin \left(135^{\circ}\right)\right)$. Write your roots in polar form and in degrees.
4) Find the complex fourth root of $81\left(\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right)$. Write your roots in rectangular form using radians.
c) Find the complex root of $9\left(\cos \left(\frac{3 \pi}{2}\right)+i \sin \left(\frac{3 \pi}{2}\right)\right)$. Write your roots in rectangular form using radians.

Day 9 - Section 6.5B - Finding Complex Roots

Objectives: SWBAT use DeMoivre's Theorem and find the roots of complex numbers

Review Questions of the Day:

1) Find the rectangular form of $r=\sec \theta$
2) Find the polar form of $y=7 x$
3) Solve the following equation $2 x^{2}-32=0$

Find all the complex roots. Write the roots in polar form and in rectangular with the argument as an angle between $\left[0^{\circ}, \mathbf{3 6 0}^{\circ}\right]$. Use a calculator to find the rectangular form.

1) Find the complex cube roots of $27\left(\cos \left(150^{\circ}\right)+i \sin \left(150^{\circ}\right)\right)$

Polar Form: \qquad Polar Form: \qquad
Rectangular Form: \qquad Rectangular Form: \qquad
2) Find the complex forth roots of $16\left(\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)\right)$

Polar Form: \qquad
Rectangular Form: \qquad
Polar Form: \qquad
Rectangular Form: \qquad
a) Find the complex cube roots of $125(\cos (\pi)+i \sin (\pi))$

Polar Form: \qquad

Rectangular Form: \qquad
Polar Form: \qquad

Rectangular Form: \qquad

Real Solutions:

Imaginary Solutions:

Find all the roots (real and imaginary) for the following equations. Write the answers in polar form, and rectangular form.
3) $x^{3}=27$
4) $x^{3}=-64 i$
\qquad Polar Form: \qquad
\qquad Rectangular Form: \qquad
b) $x^{4}=81$

Polar Form:
Rectangular Form: \qquad

Polar Form: \qquad
Rectangular Form: \qquad

