Precalculus with TRIG – Unit 8 – Polar

Day 1 - Section 6.3 - Introduction to Polar Coordinates

Objectives: SWBAT Plot polar points and develop the conversions between polar and rectangular coordinates

Review Questions of the Day:

1) What is the period for y = sinx? For y = cotx?

2) What is the expansion of cos(x + y)?

3) What needs to happen in order to have two triangles when given (SSA) SOAS?

Rectangular Coordinates:

Ordered pairs (x, y) tell us how far to go horizontally and vertically from the origin.

Polar Coordinates:

Ordered pairs are given in terms of a **radius** (distance from the origin) and an **angle** (measured in degrees or radians) from the positive *x*-axis. These pairs are written as (r, θ) . The plane on which the points are graphed is called the **Polar Plane** and the origin is called the **pole**. The polar axis is the horizontal ray that extends to the right.

Graph each point on each polar grid/plane.

- 1) $A = \left(3, \frac{\pi}{6}\right)$
- $2) B = \left(6, \frac{\pi}{4}\right)$
- 3) $C = \left(-2, \frac{\pi}{4}\right)$
- a) $D = \left(-4, \frac{\pi}{4}\right)$
- **b**) $E = \left(-5, \frac{\pi}{3}\right)$

4) Write the point F = (0,7) (rectangular form) at least two different polar ways within one revolution

Given the point on the polar graph, write the 4 ways to write that point.

Graph each point on each polar grid/plane. Also tell three other ways to write the point within one revolution. Then give another point for which r > 0 and $2\pi < \theta < 4\pi$

8) (1,−30°)

3 other ways:	3 other ways:
Another point:	Another point:

Conversions:

Each point in rectangular form can be converted into polar form and vice versa.

<u>Changing from Polar to Rectangular:</u>

Changing from Rectangular to Polar:

Day 2 - Section 6.3A - Conversation of Polar Points

Objectives: SWBAT Convert from polar to rectangular coordinates and then rectangular to polar coordinates.

Review Questions of the Day:

1) Write the point $(4, 60^\circ)$ three other ways within one revolution.

- 2) How many triangles if $A = 56^{\circ}$, $C = 89^{\circ}$, b = 19? 3) How many triangles if a = 7, b = 7, and c = 14?
- 4) What is the principal Values for Tangent?

5) What is the
$$cos\left(-\frac{\pi}{6}\right)?$$
 $sin\left(-\frac{\pi}{6}\right)?$

1) $(6, \frac{\pi}{4})$ 2) $(-14, -\frac{\pi}{6})$ a) $(0, \frac{\pi}{3})$

Changing from Rectangular to Polar:

 So r = ______ and = ______ but add _____ when the point is in ______

 or _______

 Draw a picture so you know what quadrant the point should be in and stay in.

 Change each point in rectangular form to polar form (coordinates).

 5) (2,2)
 6) (-4, -4)
 7) (0,7)

8) (4,-7) c) (-3,-4) d) (-8,0)

<u>Day 3 – Section 6.3B – Converting Equations to Polar and</u> <u>Rectangular Forms</u>

Objectives: SWBAT Convert equations from Polar form to Rectangular Form and visa versa.

Review Questions of the Day:

1) What is *csc*(0)?

2) How many triangles are possible if $A = 75^\circ$, $B = 34^\circ$, and c = 14.5?

- 3) Write the point (1,1) four different ways in polar form.
- **4**) Simplify $4sin^{2}(x) + 4cos^{2}(x)$

Rectangular to Polar:

 $x^2 + y^2 =$ _____

Polar to Rectangular:

x = _____*y* = _____

Continue to use these above formulas for today, only use them in equations to change the form of the equations.

Writing Equations Steps:

- Rewrite any *x* as ______ and any *y* as ______.
- Solve for ______
- Simplify the expression

Equation	Linear		Circle	
Rectangular	y = constant $x = constant$	y = mx	y = mx + b	$x^2 + y^2 = r^2$
Polar	$r = \frac{a}{\sin\theta}$ or $r = csc\theta$ $r = \frac{a}{\cos\theta}$ or $r = sec\theta$	θ =	<i>r</i> =	$r = \pm a$ $r = asin(\theta)$ $r = acos(\theta)$

Change each from rectangular to polar form.

1)
$$y = 2$$
 2) $x = 3$ **a**) $y = 4$

3)
$$x^2 + y^2 = 25$$
 4) $4x^2 + 4y^2 = 16$ **b**) $x^2 + y^2 = 7$

5)
$$y = x$$
 5) $y = 2x$ c) $y = \frac{x}{2}$

6)
$$y = 3x-1$$

d) $y = 2x-1$
7) $x^2 + 2x + y^2 = 4y$

Change each from polar to rectangular form. Your answer should have no r's and no θ 's.

8) r = 5 e) r = -7 9) $r = 2\cos\theta$ f) $r = 3\sin\theta$

12) $\theta = 86^{\circ}$ **13**) $r^2 = rcos(\theta) + rsin(\theta)$

14)
$$r = 4\cos(\theta) + 5\sin(\theta)$$
 15) $r = \frac{2}{1 + \cos(\theta)}$

Day 4 - Section 6.4 - Graphing Cardioid, Limacons, Circles, and Lines

Objectives: SWBAT Graph Equations in Polar Form: Circles, Lines, Cardioids, and Limacons.

Review Questions of the Day:

1) Convert (-3, -4) to polar (use degrees)

2) What is
$$cos\left(\frac{\pi}{3}\right)$$
, $cos\left(-\frac{\pi}{3}\right)$, $sin\left(\frac{\pi}{3}\right)$, $sin\left(-\frac{\pi}{3}\right)$?

- **3**) What are the principle values for sine?
- 4) What are the principal values for cosine?

Lines:

 $\theta = angle.$

Graph the following lines in polar form.

Circles:

- r = m and where *m* is the radius of a circle with center (0,0)
- $r = dcos(\theta)$ or $r = dsin(\theta)$ where d is the diameter of a circle tangent to the pole.
- When graphing using a table, you need to use your principle values for sine and cosine.

Graph the following circles in polar form.

Graph each line or circle on the polar grid.

1)
$$r = 4\cos(\theta)$$
 and $r = -4\cos(\theta)$

θ	r
0	
$\frac{\pi}{c}$	
$\frac{6}{\pi}$	
$\frac{4}{\pi}$	
$\frac{\overline{3}}{\pi}$	
$\frac{\pi}{2}$	
$\frac{2\pi}{3}$	
$\frac{3\pi}{4}$	
$\frac{5\pi}{6}$	
π	

2)
$$r = 5sin(\theta)$$
 and $r = -5sin(\theta)$

Symmetry:

Since cos(x) = cos(-x) then cosine is ______. Therefore, the graph will have _______ (x axis in rectangular) symmetry. Since the principal values for Cosine exist in Quadrants ______ and _____ we will use angles in Quadrants ______ and _____ as plug-in values.

Likewise, since sin(-x) = -sin(x) then sine is _____. Therefore the graph will have ______ symmetry. Since the principal values for sine exist in Quadrants ______ & we will use angles in Quadrants ______ and _____ as plug-in values.

Cardioids:

- Graph of a rolling circle onto another circle of the same radius
- $r = \mathbf{m} \pm \mathbf{m} \cos\theta$ or $r = \mathbf{m} \pm \mathbf{m} \sin\theta$.
- Use your "easy" points based on the Principal Values of Sine and Cosine
 - Sine $\left\{\frac{3\pi}{2}, \frac{11\pi}{6}, 0, \frac{\pi}{6}, \frac{\pi}{2}\right\}$, • Cosine $\left\{0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \pi\right\}$
- Cardioids always go through the pole.

https://en.wikipedia.org/wiki/Cardioid#/media/File:Cardiod_animation.gif

• Cardioids can face in four direction based on the sign and trig function

Graph each cardioids on the polar grid.

5) $r = 2 - 2cos\theta$

6) $r = 3 + 3sin\theta$

Direction of Polar Turning Point based on Equation Type			
Cos	sine	Si	ne
Cosine and Positive	Cosine and Negative	Sine and Positive	Sine and Negative
Right	Left	Up	Down

Limaçons:

- Graph of a rolling circle onto another circle of the same radius however you values *k* and *m* are not equal
- $r = \mathbf{k} \pm \mathbf{m}\cos\theta$ or $r = \mathbf{k} \pm \mathbf{m}\sin\theta$
- Limacons follow the same directional rules as circles and cardioids with respect to sine and cosine.

Loop vs. Dimple Graph

- A loop occurs when k < m, which basically means when *r* can equal 0.
- Limacons with a LOOP go through the pole and Limacons with a dimple go around the pole.

Given the following equations, decide if the Limacons has a loop or not, and decide which direction the tip points.

Direction:	Direction:	Direction:	Direction:
7) $r = 7 + 8\cos\theta$	8) $r = 2 - \sin\theta$	c) $r = 9 - 2\cos\theta$	d) $r = 11 - 15sint$

Loop or	Loop or	Loop or	Loop or
Dimple [•]	Dimple ⁻	Dimple ⁻	Dimple [®]

Use five points for Limacons:

9) $r = 2 + sin\theta$

10) $r = 2 - 3cos\theta$

Cardioid Shortcut:

<u>Given the following equations, decide if the Limacons has a loop or not, and decide which direction the tip points.</u>

10) $r = 4 - 4\cos\theta$

e) $r = 2 + 2cos\theta$

11) $r = 3 + 3sin\theta$

Limaçons Shortcut:

<u>Given the following equations, decide if the Limacons has a loop or not, and decide which direction the tip points.</u>

13) $r = 3 + 2sin\theta$

 $\frac{\pi}{2}$ 2π $\frac{\pi}{3}$ 3 3π $\frac{\pi}{4}$ 4 $\frac{\pi}{6}$ $\frac{5\pi}{6}$ 0 π <u>11π</u> $\frac{7\pi}{6}$ 6 $\frac{5\pi}{4}$ $\frac{7\pi}{4}$

 $\frac{3\pi}{2}$

g) $r = 4 - 1\cos\theta$

h) $r = 1 - 5sin\theta$

 $\frac{4\pi}{3}$

 $\frac{5\pi}{3}$

Day 5 - Section 6.4A - Graphing Spirals and Cosine Roses

Objectives: SWBAT Graph Equations in Polar Form: Roses, Lemniscates, and Spirals

Review Questions of the Day:

The direction of a spiral is ALWAYS ٠ counterclockwise.

Graph each spiral on the same polar plane using two colors. Use a graphing calculator and the table to get decimal values to the nearest tenth.

1)
$$r = \theta$$

2) $r = -2\theta$

θ

0

π

2

π

3π

2

 2π

These are graphs with 3 or more petals. Explore these on the <u>calculator</u> to figure out the rule for the <u>number of petals</u>.

a)
$$r = 6sin(2\theta)$$
 b) $r = 6cos(3\theta)$ **c**) $r = 6sin(5\theta)$ **d**) $r = 6cos(4\theta)$

Roses:

- Roses look like $r = msin(n\theta)$ or $r = mcos(n\theta)$
- The length of each petal is *m* (pole to turning point)
- When *n* is odd.... There are *n* number of petals
- When *n* is even.... There are 2n number of petals
- Cosine Roses will have horizontal symmetry so there is at least one petal along θ = 0 (Polar axis). Which means you start at the

_____, and then add $\frac{\pi}{n}$ if *n* is even, or $\frac{2\pi}{n}$ if *n* is odd.

3) $r = 5cos(2\theta)$

Odd or Even:	
Number of petals:	
Starting Spot:	
Distance Between Polar Turning Points:	
Asymptotes Starting Spot:	

Odd or Even:Number of petals:Starting Spot:Distance Between
Polar Turning Points:Asymptotes Starting
Spot:

4) $r = -6cos(3\theta)$

a)
$$r = 5cos(4\theta)$$

Odd or Even:	
Number of petals:	
Starting Spot:	
Distance Between	
Polar Turning Points:	

b)
$$r = -3cos(5\theta)$$

Odd or Even:	
Number of petals:	
Starting Spot:	
Distance Between	
Polar Turning Points:	

Direction of the Roses		
Cosine	– Cosine	

Day 6 - Section 6.4B - Graphing All Roses

Objectives: SWBAT Graph Equations in Polar Form: Roses, Lemniscates, and Spirals

Review Questions of the Day:

Label each as a Cardioid, Line, Circle, Limaçon, Spiral, or Rose.

- **1**) $r = 19\cos\theta$ **2**) $r = 2 + 3\sin\theta$ **3**) $r = 5\cos(5\theta)$ **4**) $r\sin\theta = 7$
- **5**) $\theta = 1$ **6**) $r = 3 3\cos\theta$ **7**) $r = 2\theta$ **8**) $r = 2sec\theta$

Graphing Sine Roses:

Where does $sin\theta = 1$?

Since a sine rose has vertical symmetry then you must find where the tip of the first petal begins. Since $sin\left(\frac{\pi}{2}\right) = 1$ then you must find where the $angle = \frac{\pi}{2}$ in order to figure out where you have a max or a min.

Where does $Sin(3\theta) = 1$?

So $sin(n\theta) = 1$ at $\theta =$ ______. So a max or a min of a sine rose will occur at $\theta =$ ______. This is where you will have a tip of one petal always. Then the petals are spread evenly around the polar plane so add _______ each time.

Where does $sin(2\theta) = 1$?

1)
$$r = 5sin(2\theta)$$

Odd or Even:	
Number of petals:	
Starting Spot:	
Distance Between Polar	
Turning Points:	
Asymptotes Starting	
Spot:	

2) $r = 4sin(3\theta)$

Odd or Even:	
Number of petals:	
Starting Spot:	
Distance Between Polar	
Turning Points:	
Asymptotes Starting	
Spot:	

a) $r = 5sin(4\theta)$

Odd or Even:	
Number of petals:	
Starting Spot:	
Distance Between Polar	
Turning Points:	
Asymptotes Starting	
Spot:	

Lemniscates:

- A two petal rose
- $r^2 = m^2 sin(2\theta)$ or $r^2 = m^2 cos(2\theta)$
- Always two petals, and always 2θ
- Make sure you use a \pm in calculator

Graph the following.

3) $r^2 = 16sin(2\theta)$

b) $r^2 = 25cos(2\theta)$

Day 7 – Section 6.5 – Polar Form

Objectives: SWBAT Graph Equations in Polar Form: Roses, Lemniscates, and Spirals

Review Questions of the Day:

1) Change $r = cos(\theta)$ to rectangular form?

2) Solve for all the values of $x \cos(x) = \frac{1}{2}$

3) What does $i = i^2 = i^2 = i^2$

4) Simplify: $\sqrt{-25}$

<u>Plot each of the following complex numbers in the complex plane, and find both its absolute value and argument.</u>

1) $3 + 4i$	
	\mathbf{P}_{+++}
2) 2 – 2 <i>i</i>	
3) 3/	
a) $-2 - 4l$	

Polar Form of a Complex Number:

Write the following in polar form.

4) 3 + 3i **5**) -4 - 4i

b) 2 – 2*i*

Convert from Polar to Rectangular Form:

<u>rcis(θ)</u>:

6)
$$2(\cos(\pi) + i\sin(\pi))$$
 7) $4(\cos(2.4) + i\sin(2.4))$ c) $3\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$

Products and Quotients of Complex Numbers in Polar Form:

Products:

Quotients:

Find the product and leave your answer in the desired form.

8) $z_1 = 6(cos(35^\circ) + isin(35^\circ))$, $z_2 = 5(cos(55^\circ) + isin(55^\circ))$ Polar Form

9) $(6cis(\pi))(5cis(\frac{\pi}{4}))$ Rectangular Form

d) $(4cis(17^\circ))(3cis(25^\circ))$ Polar Form

10) (3-3i)(2+2i)

Algebra	Polar

Find the quotient and leave your answer in the desired form.

12) $z_1 = 30(cos(70^\circ) + isin(70^\circ))$, $z_2 = 5(cos(25^\circ) + isin(25^\circ))$ Polar Form

11) $(80cis(220^\circ))(40cis(300^\circ))$ Rectangular Form

e) $\left(18cis\left(\frac{\pi}{10}\right)\right)\left(2cis\left(\frac{\pi}{20}\right)\right)$ Rectangular

Do the following in using Algebra rules, and polar rules. Leave your answer in polar form.

12) (2+2i)(1+i)

Algebra	Polar

Day 8 - Section 6.5A - Intro to DeMoivre's Theorem

Objectives: SWBAT use DeMoivre's Theorem and find the roots of complex numbers

Review Questions of the Day:

1) Solve for all values of $x \tan(x) = 1$ 2) The graph of $r = 3 + 3\cos(\theta)$ is a

3) Change x = 3 to polar form. 4) Expand: $(3x - 5)^3$

Imaginary Number:

Complex Number:

Powers of a Complex Number in Polar:

 $(r(\cos\theta + i\sin\theta))^2 =$

 $(r(\cos\theta + i\sin\theta))^3 =$

 $(r(\cos\theta + i\sin\theta))^4 =$

 $\big(r(cos\theta+isin\theta)\big)^5=$

This is called **DeMoivre's Theorem:**

Find each power and write the answer in rectangular form and polar form.

1) $(1+i)^8$

2) $\left[2\left(\cos\left(\frac{\pi}{10}\right) + i\sin\left(\frac{\pi}{10}\right)\right)\right]^5$

Polar Form: _____

Rectangular Form: _____

Polar Form: _____

Rectangular Form: _____

a) $[3(\cos(100^\circ) + isin(100^\circ))]^3$

b) $(1-i)^{10}$

Polar Form: _____

Rectangular Form: _____

Polar Form: _____

DeMoivre's Theorem for Finding Complex Roots:

- All the Answers or Roots are equally spaced throughout the circle
- $Z_{Primary Root} = r \left[cos \left(\frac{\theta}{n} \right) + isin \left(\frac{\theta}{n} \right) \right]$, n = number of roots
- Find the Primary Root then use that to find the Roots of Unity

Complex Root:

Primary Root:

Roots of Unity:

Fundamental Rule of Algebra:

3) Find the complex cube root of $(8cos(135^\circ) + isin(135^\circ))$. Write your roots in polar form and in degrees.

4) Find the complex fourth root of $81\left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right)$. Write your roots in rectangular form using radians.

c) Find the complex root of $9\left(\cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right)\right)$. Write your roots in rectangular form using radians.

Day 9 – Section 6.5B – Finding Complex Roots

Objectives: SWBAT use DeMoivre's Theorem and find the roots of complex numbers

Review Questions of the Day:

1) Find the rectangular form of $r = sec\theta$ 2) Find the polar form of y = 7x

3) Solve the following equation $2x^2 - 32 = 0$

Find all the complex roots. Write the roots in polar form and in rectangular with the argument as an angle between [0°, 360°]. Use a calculator to find the rectangular form.

1) Find the complex cube roots of $27(\cos(150^\circ) + isin(150^\circ))$

Polar Form:	Polar Form:
Rectangular Form:	Rectangular Form:

2) Find the complex forth roots of $16\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)$

Polar Form:		
-------------	--	--

Polar Form: _____

Rectangular Form: _____

a) F	ind the complex	cube roots	of 125($(\cos(\pi) +$	$isin(\pi)$
------	-----------------	------------	---------	----------------	-------------

Polar Form:

Polar Form: _____

Rectangular Form: _____

Rectangular Form: _____

Real Solutions:

Imaginary Solutions:

Find all the roots (real and imaginary) for the following equations. Write the answers in polar form, and rectangular form.

3) $x^3 = 27$

4) $x^3 = -64i$

Polar Form:

Polar Form:	
-------------	--

Rectangular Form:	
-------------------	--

Polar Form: _____

Polar Form: _____

Rectangular Form: _____