TRIG DeMoivre's Theorem Worksheet #2 More Roots 6.5B

Name	Key	Date	out of 22

In exercise 1, find all the complex roots. Write roots in polar form and in rectangular with the argument as an angle between 0 and 360°. (3 points)

1) Find the complex cube roots of 64(cos210°+ isin210°)

Polar Form:

Rectangular Form: Use Calculator

In exercise 2, find all the complex roots. Write roots in polar form and in rectangular with the argument as an angle between 0 and 2π . (4 points)

2) Find the complex fourth roots of $81(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$.

Polar Form:

3cis 1/12 3cis 711/12 3cis 1311/12 3cis 1911/12

Rectangular Form: Use Calculator

290+078i) (-0.78+2.90i) (0.78-2.90i)

TRIG DeMoivre's Theorem Worksheet #2 More Roots 6.5B

Solve each under the **set of complex numbers**. Write your answers in polar and rectangular form. Store your solutions under x and check each answer. (5 points each)

4) x⁴ = - 16

$$3) x^{3} = 8$$

$$2CiSO = 2$$

$$2CiS^{3} = -1 + \sqrt{3}i$$

$$2CiS^{4}II = -1 - \sqrt{3}i$$

$$\chi^4 = 16cisT$$

 $\chi_1 = (16cisT)^{1/4}$
 $\chi_1 = \theta cisT/4 = \sqrt{2}+\sqrt{2}i$
 $\chi_2 = \theta cisST/4 = -\sqrt{2}+\sqrt{2}i$
 $\chi_3 = \theta cisST/4 = -\sqrt{2}-\sqrt{2}i$
 $\chi_4 = \theta cisT/4 = \sqrt{2}-\sqrt{2}i$
 $\chi_4 = \theta cisT/4 = \sqrt{2}-\sqrt{2}i$
 $\chi_4 = \theta cisT/4 = \sqrt{2}-\sqrt{2}i$
POLAR RECT