Name \qquad Date \qquad out of 26

1) Rafael, an exchange student from Brazil, made phone calls within Canada, to the United States, and to Brazil. The rates per minute for these calls vary for the different countries. Use the information in the following table to determine the rates.

Month	Time within Canada (min)	Time to the U.S. $(\mathbf{m i n})$	Time to Brazil $(\mathbf{m i n})$	Charges $(\$)$
September	90	120	180	$\$ 252.00$
October	70	100	120	$\$ 184.00$
November	50	110	150	$\$ 206.00$

Let \mathbf{c} represent the rate for calls within Canada.
Let u represent the rate for calls to the United States.
Let brepresent the rate for calls to Brazil.
Express the problem as a system of linear equations and then use rref in order to solve:
2) Calculate the number of minutes that Carlos called within Canada, to the United States, and to Mexico during the month of December. The charges are $28 \notin / \mathrm{min}$ within Canada, $30 \phi / \mathrm{min}$ to the U.S., and $84 \notin / \mathrm{min}$ to Mexico if the following conditions applied:

- His total bill for the month was $\$ 90.96$
- He talked twice as long to Mexico as he did to the U.S.
- The total number of minutes spent talking within Canada and to Mexico was 122. Let \mathbf{c} represent the number of minutes within Canada
Let u represent the number of minutes to the United States
Let \mathbf{m} represent the number of minutes to Mexico
Express the problem as a system of linear equations and then use rref in order to solve:

3) Tracy, Danielle and Sherri bought snacks for a girls' sleepover. They each bought the items shown in the following table at the local convenience store:

Number of bags of potato chips	Number of litres of pop	Number of chocolate bars	Cost (\$)
4	4	6	21.00
3	2	10	20.88
2	3	4	13.17

Calculate the unit price of each snack purchased by the girls.
Let \mathbf{c} represent the unit cost of the potato chips.
Let \mathbf{p} represent the unit cost of the pop.
Let \mathbf{b} represent the unit cost a chocolate bar.
Express the problem as a system of linear equations and then use rref in order to solve:
4) Solve this 4 by 4 system using rref.

$$
\begin{aligned}
2 x-4 y+7 z-4 w & =-1 \\
x+4 y-2 z+9 w & =39 \\
x+y+z & =6 \\
.4 z-8 w & =-15.6
\end{aligned}
$$

5) Make up your own 3 by 3 system that has solution (1, 1, 1).
6) Solve this system without using matrices. Use substitution or elimination.

$$
\begin{gathered}
x+y+z=6 \\
2 x-y+z=2 \\
3 x+y-4 z=0
\end{gathered}
$$

