Date: ___

Unit 8 – Similarity

Day 1 Ratio and Proportions

OBJECTIVES ~ SWBAT Find and simplify the ratio of two numbers SWBAT Use proportions to solve problems

Ratio~

- •
- •
- -
- •

Examples

Simplify the following ratios.

1. $\frac{12}{15}$	2. $\frac{14}{56}$	3. $\frac{21}{6}$
---------------------------	---------------------------	--------------------------

4. Use the number line to find the ratio of the distances.

HELPFUL KEY 1 mi = 1,609.344 meters
1 ft = 12 in. 3 ft = 1 yd 1m = 100 cm 1kg = 1000g 1 gal = 4 quarts 64ozs = 1 gal
1 mile = 5,280 ft. 1 lb = 16 oz. 1 km = 1000 m 4qt = 1 gal 1 pint = 2 cups

5. Simplify the following Ratios

a.	24 <i>oz</i>	h	14 <i>ft</i>	ے د	$\frac{4ft}{d}$	24 <i>days</i>
	2lb	D.	6 <i>yd</i>	C.	8in	u.

Cross Product Property ~

$$\frac{a}{b} = \frac{c}{d}$$

Examples:

Solve the proportions.

6.	$\frac{4}{x} = \frac{5}{15}$	7.	$\frac{4}{x} = \frac{5}{7}$
8.	$\frac{3}{y+2} = \frac{2}{y}$	9.	$\frac{3-x}{6} = \frac{x}{2}$

Solve the following Proportions:

10. The perimeter of rectangle ABCD is 60 centimeters. The ratio of AB:BC is 3:2. Find the length and width of the rectangle.

w

В

l

Α

12. A triangle has a perimeter of 264 meters. If the ratio of each side is 4:7:11. What is the length of each side?

13. When a 10 foot vertical pole casts a 2 foot shadow, and a pine tree has a 25-foot shadow. How tall is the tree?

Day 2 Similar Polygons and Triangles

List all pairs of congruent angles, and then write a proportion that relates to the corresponding sides for each pair of similar polygons.

1. $\triangle ABC \sim \triangle EDF$

SIDES AN

ANGLES

2. Decide if the following figures are similar.

Similar Polygon and Perimeter Theorem:

5. Given the following triangles, write all the ratios of sides and perimeters.

6. If ABCDE ~ PQRST, find the scale factor of ABCDE to PQRST, and each polygons perimeter.

Perimeter of ABCDE _____ PQRST __

Day 3 Proving Triangles are Similar

OBJECTIVES ~ SWBAT Use similarity theorems to prove that two triangles are similar

A. Angle – Angle Similarity Theorem -- AA

C. Side-Angle-Side Similarity Theorem -- SAS

Examples: Determine if the following triangles are similar.

Are the following triangles similar? If so, explain why.

Find the measure in the following triangles (if possible).

7.

Day 4 Proportions and Similar Triangles

OJECTIVES ~ SWBAT Use proportionality theorems to calculate segment lengths

Triangle Proportionality (LADDER) Theorem~

Examples:

1. Use the diagram to find if $\overline{BE} \parallel \overline{CD}$?

3. Find AE

Congruent Parts of Parallel Lines

4. Find x

Examples:

5. Given $\overline{AB} \cong \overline{BC}$, find FE

Triangle Proportionality (LADDER) Theorem~

Examples: 6. Find x

Day 5 Proportions and Similar Triangles - Segment Lengths

OJECTIVES ~ SWBAT Use proportionality theorems to calculate segment lengths

1. $\frac{MN}{NO} = \frac{MJ}{?}$ **2.** $\frac{JK}{KL} = \frac{?}{OP}$

3.	<u>NJ</u> <u>MJ</u>	4	PL_	?
	$\overline{OK} = \frac{1}{?}$	т.	NJ	MN

Find the following variables.

Determine the length of each segment.

9. \overline{AE}

6. \overline{AG} **7.** \overline{FC}

8. \overline{ED}

